Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Zampino is active.

Publication


Featured researches published by Giuseppe Zampino.


Nature Genetics | 2001

Mutations in PTPN11 , encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome

Marco Tartaglia; Ernest L. Mehler; Rosalie Goldberg; Giuseppe Zampino; Han G. Brunner; Hannie Kremer; Ineke van der Burgt; Andrew H. Crosby; Andra Ion; Steve Jeffery; Kamini Kalidas; Michael A. Patton; Raju Kucherlapati; Bruce D. Gelb

Noonan syndrome (MIM 163950) is an autosomal dominant disorder characterized by dysmorphic facial features, proportionate short stature and heart disease (most commonly pulmonic stenosis and hypertrophic cardiomyopathy). Webbed neck, chest deformity, cryptorchidism, mental retardation and bleeding diatheses also are frequently associated with this disease. This syndrome is relatively common, with an estimated incidence of 1 in 1,000–2,500 live births. It has been mapped to a 5-cM region (N-SH2) on chromosome 12q24.1, and genetic heterogeneity has also been documented. Here we show that missense mutations in PTPN11 (MIM 176876)—a gene encoding the nonreceptor protein tyrosine phosphatase SHP-2, which contains two Src homology 2 (SH2) domains—cause Noonan syndrome and account for more than 50% of the cases that we examined. All PTPN11 missense mutations cluster in interacting portions of the amino N-SH2 domain and the phosphotyrosine phosphatase domains, which are involved in switching the protein between its inactive and active conformations. An energetics-based structural analysis of two N-SH2 mutants indicates that in these mutants there may be a significant shift of the equilibrium favoring the active conformation. This implies that they are gain-of-function changes and that the pathogenesis of Noonan syndrome arises from excessive SHP-2 activity.


Nature Genetics | 2007

Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy

Bhaswati Pandit; Anna Sarkozy; Len A. Pennacchio; Claudio Carta; Kimihiko Oishi; Simone Martinelli; Edgar A. Pogna; Wendy Schackwitz; Anna Ustaszewska; Andrew P. Landstrom; J. Martijn Bos; Steve R. Ommen; Giorgia Esposito; Francesca Lepri; Christian Faul; Peter Mundel; Juan Pedro López Siguero; Romano Tenconi; Angelo Selicorni; Cesare Rossi; Laura Mazzanti; Isabella Torrente; Bruno Marino; Maria Cristina Digilio; Giuseppe Zampino; Michael J. Ackerman; Bruno Dallapiccola; Marco Tartaglia; Bruce D. Gelb

Noonan and LEOPARD syndromes are developmental disorders with overlapping features, including cardiac abnormalities, short stature and facial dysmorphia. Increased RAS signaling owing to PTPN11, SOS1 and KRAS mutations causes ∼60% of Noonan syndrome cases, and PTPN11 mutations cause 90% of LEOPARD syndrome cases. Here, we report that 18 of 231 individuals with Noonan syndrome without known mutations (corresponding to 3% of all affected individuals) and two of six individuals with LEOPARD syndrome without PTPN11 mutations have missense mutations in RAF1, which encodes a serine-threonine kinase that activates MEK1 and MEK2. Most mutations altered a motif flanking Ser259, a residue critical for autoinhibition of RAF1 through 14-3-3 binding. Of 19 subjects with a RAF1 mutation in two hotspots, 18 (or 95%) showed hypertrophic cardiomyopathy (HCM), compared with the 18% prevalence of HCM among individuals with Noonan syndrome in general. Ectopically expressed RAF1 mutants from the two HCM hotspots had increased kinase activity and enhanced ERK activation, whereas non–HCM-associated mutants were kinase impaired. Our findings further implicate increased RAS signaling in pathological cardiomyocyte hypertrophy.


Nature Genetics | 2007

Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome

Marco Tartaglia; Len A. Pennacchio; Chen Zhao; Kamlesh K. Yadav; Valentina Fodale; Anna Sarkozy; Bhaswati Pandit; Kimihiko Oishi; Simone Martinelli; Wendy Schackwitz; Anna Ustaszewska; Joel Martin; James Bristow; Claudio Carta; Francesca Lepri; Cinzia Neri; Isabella Vasta; Kate Gibson; Cynthia J. Curry; Juan Pedro López Siguero; Maria Cristina Digilio; Giuseppe Zampino; Bruno Dallapiccola; Dafna Bar-Sagi; Bruce D. Gelb

Noonan syndrome is a developmental disorder characterized by short stature, facial dysmorphia, congenital heart defects and skeletal anomalies. Increased RAS-mitogen-activated protein kinase (MAPK) signaling due to PTPN11 and KRAS mutations causes 50% of cases of Noonan syndrome. Here, we report that 22 of 129 individuals with Noonan syndrome without PTPN11 or KRAS mutation have missense mutations in SOS1, which encodes a RAS-specific guanine nucleotide exchange factor. SOS1 mutations cluster at codons encoding residues implicated in the maintenance of SOS1 in its autoinhibited form. In addition, ectopic expression of two Noonan syndrome–associated mutants induces enhanced RAS and ERK activation. The phenotype associated with SOS1 defects lies within the Noonan syndrome spectrum but is distinctive, with a high prevalence of ectodermal abnormalities but generally normal development and linear growth. Our findings implicate gain-of-function mutations in a RAS guanine nucleotide exchange factor in disease for the first time and define a new mechanism by which upregulation of the RAS pathway can profoundly change human development.


American Journal of Human Genetics | 2006

Diversity and Functional Consequences of Germline and Somatic PTPN11 Mutations in Human Disease

Marco Tartaglia; Simone Martinelli; Lorenzo Stella; Gianfranco Bocchinfuso; Elisabetta Flex; Viviana Cordeddu; Giuseppe Zampino; Ineke van der Burgt; Antonio Palleschi; Tamara C. Petrucci; Mariella Sorcini; Claudia Schoch; Robin Foà; Peter D. Emanuel; Bruce D. Gelb

Germline mutations in PTPN11, the gene encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome (NS) and the clinically related LEOPARD syndrome (LS), whereas somatic mutations in the same gene contribute to leukemogenesis. On the basis of our previously gathered genetic and biochemical data, we proposed a model that splits NS- and leukemia-associated PTPN11 mutations into two major classes of activating lesions with differential perturbing effects on development and hematopoiesis. To test this model, we investigated further the diversity of germline and somatic PTPN11 mutations, delineated the association of those mutations with disease, characterized biochemically a panel of mutant SHP-2 proteins recurring in NS, LS, and leukemia, and performed molecular dynamics simulations to determine the structural effects of selected mutations. Our results document a strict correlation between the identity of the lesion and disease and demonstrate that NS-causative mutations have less potency for promoting SHP-2 gain of function than do leukemia-associated ones. Furthermore, we show that the recurrent LS-causing Y279C and T468M amino acid substitutions engender loss of SHP-2 catalytic activity, identifying a previously unrecognized behavior for this class of missense PTPN11 mutations.


Nature Genetics | 2009

Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair

Viviana Cordeddu; Elia Di Schiavi; Len A. Pennacchio; Avi Ma'ayan; Anna Sarkozy; Valentina Fodale; Serena Cecchetti; Alessio Cardinale; Joel Martin; Wendy Schackwitz; Anna Lipzen; Giuseppe Zampino; Laura Mazzanti; Maria Cristina Digilio; Simone Martinelli; Elisabetta Flex; Francesca Lepri; Deborah Bartholdi; Kerstin Kutsche; Giovanni Battista Ferrero; Cecilia Anichini; Angelo Selicorni; Cesare Rossi; Romano Tenconi; Martin Zenker; Daniela Merlo; Bruno Dallapiccola; Ravi Iyengar; Paolo Bazzicalupo; Bruce D. Gelb

N-myristoylation is a common form of co-translational protein fatty acylation resulting from the attachment of myristate to a required N-terminal glycine residue. We show that aberrantly acquired N-myristoylation of SHOC2, a leucine-rich repeat–containing protein that positively modulates RAS-MAPK signal flow, underlies a clinically distinctive condition of the neuro-cardio-facial-cutaneous disorders family. Twenty-five subjects with a relatively consistent phenotype previously termed Noonan-like syndrome with loose anagen hair (MIM607721) shared the 4A>G missense change in SHOC2 (producing an S2G amino acid substitution) that introduces an N-myristoylation site, resulting in aberrant targeting of SHOC2 to the plasma membrane and impaired translocation to the nucleus upon growth factor stimulation. Expression of SHOC2S2G in vitro enhanced MAPK activation in a cell type–specific fashion. Induction of SHOC2S2G in Caenorhabditis elegans engendered protruding vulva, a neomorphic phenotype previously associated with aberrant signaling. These results document the first example of an acquired N-terminal lipid modification of a protein causing human disease.


Nature Genetics | 2010

A restricted spectrum of NRAS mutations causes Noonan syndrome

Ion C. Cirstea; Kerstin Kutsche; Radovan Dvorsky; Lothar Gremer; Claudio Carta; Denise Horn; Amy E. Roberts; Francesca Lepri; Torsten Merbitz-Zahradnik; Rainer König; Christian P. Kratz; Francesca Pantaleoni; Maria Lisa Dentici; Victoria A. Joshi; Raju Kucherlapati; Laura Mazzanti; Stefan Mundlos; Michael A. Patton; Margherita Silengo; Cesare Rossi; Giuseppe Zampino; Cristina Digilio; Liborio Stuppia; Eva Seemanova; Len A. Pennacchio; Bruce D. Gelb; Bruno Dallapiccola; Alfred Wittinghofer; Mohammad Reza Ahmadian; Marco Tartaglia

Noonan syndrome, a developmental disorder characterized by congenital heart defects, reduced growth, facial dysmorphism and variable cognitive deficits, is caused by constitutional dysregulation of the RAS-MAPK signaling pathway. Here we report that germline NRAS mutations conferring enhanced stimulus-dependent MAPK activation account for some cases of this disorder. These findings provide evidence for an obligate dependency on proper NRAS function in human development and growth.


American Journal of Human Genetics | 2006

Germline missense mutations affecting KRAS isoform B are associated with a severe noonan syndrome phenotype

Claudio Carta; Francesca Pantaleoni; Gianfranco Bocchinfuso; Lorenzo Stella; Isabella Vasta; Anna Sarkozy; Cristina Digilio; Antonio Palleschi; Antonio Pizzuti; Paola Grammatico; Giuseppe Zampino; Bruno Dallapiccola; Bruce D. Gelb; Marco Tartaglia

Noonan syndrome (NS) is a developmental disorder characterized by short stature, facial dysmorphia, congenital heart disease, and multiple skeletal and hematologic defects. NS is an autosomal dominant trait and is genetically heterogeneous. Gain of function of SHP-2, a protein tyrosine phosphatase that positively modulates RAS signaling, is observed in nearly 50% of affected individuals. Here, we report the identification of heterozygous KRAS gene mutations in two subjects exhibiting a severe NS phenotype with features overlapping those of cardiofaciocutaneous and Costello syndromes. Both mutations were de novo and affected exon 6, which encodes the C-terminal portion of KRAS isoform B but does not contribute to KRAS isoform A. Structural analysis indicated that both substitutions (Val152Gly and Asp153Val) perturb the conformation of the guanine ring-binding pocket of the protein, predicting an increase in the guanine diphosphate/guanine triphosphate (GTP) dissociation rate that would favor GTP binding to the KRASB isoform and bypass the requirement for a guanine nucleotide exchange factor.


Human Mutation | 2009

Germline BRAF mutations in noonan, LEOPARD, and cardiofaciocutaneous Syndromes: Molecular diversity and associated phenotypic spectrum

Anna Sarkozy; Claudio Carta; Sonia Moretti; Giuseppe Zampino; Maria Cristina Digilio; Francesca Pantaleoni; Anna Paola Scioletti; Giorgia Esposito; Viviana Cordeddu; Francesca Lepri; Valentina Petrangeli; Maria Lisa Dentici; Grazia M.S. Mancini; Angelo Selicorni; Cesare Rossi; Laura Mazzanti; Bruno Marino; Giovanni Battista Ferrero; Margherita Silengo; Luigi Memo; Franco Stanzial; Francesca Faravelli; Liborio Stuppia; Efisio Puxeddu; Bruce D. Gelb; Bruno Dallapiccola; Marco Tartaglia

Noonan, LEOPARD, and cardiofaciocutaneous syndromes (NS, LS, and CFCS) are developmental disorders with overlapping features including distinctive facial dysmorphia, reduced growth, cardiac defects, skeletal and ectodermal anomalies, and variable cognitive deficits. Dysregulated RAS–mitogen‐activated protein kinase (MAPK) signal traffic has been established to represent the molecular pathogenic cause underlying these conditions. To investigate the phenotypic spectrum and molecular diversity of germline mutations affecting BRAF, which encodes a serine/threonine kinase functioning as a RAS effector frequently mutated in CFCS, subjects with a diagnosis of NS (N=270), LS (N=6), and CFCS (N=33), and no mutation in PTPN11, SOS1, KRAS, RAF1, MEK1, or MEK2, were screened for the entire coding sequence of the gene. Besides the expected high prevalence of mutations observed among CFCS patients (52%), a de novo heterozygous missense change was identified in one subject with LS (17%) and five individuals with NS (1.9%). Mutations mapped to multiple protein domains and largely did not overlap with cancer‐associated defects. NS‐causing mutations had not been documented in CFCS, suggesting that the phenotypes arising from germline BRAF defects might be allele specific. Selected mutant BRAF proteins promoted variable gain of function of the kinase, but appeared less activating compared to the recurrent cancer‐associated p.Val600Glu mutant. Our findings provide evidence for a wide phenotypic diversity associated with mutations affecting BRAF, and occurrence of a clinical continuum associated with these molecular lesions. Hum Mutat 0:1–8, 2009.


Epilepsia | 2000

Teratogenic effects of antiepileptic drugs : Use of an international database on malformations and drug exposure (MADRE)

Carla Arpino; Sonia Brescianini; Elisabeth Robert; Eduardo E. Castilla; Guido Cocchi; Martina C. Cornel; Catherine De Vigan; P. Lancaster; Paul Merlob; Yoshio Sumiyoshi; Giuseppe Zampino; Cristina Renzi; Aldo Rosano; Pierpaolo Mastroiacovo

Summary: Purpose: The study goal was to assess teratogenic effects of antiepileptic drugs (AEDs) through the use of a surveillance system (MADRE) of infants with malformations.


Molecular Syndromology | 2010

Noonan Syndrome: Clinical Aspects and Molecular Pathogenesis

Marco Tartaglia; Giuseppe Zampino; Bruce D. Gelb

Noonan syndrome (NS) is a relatively common, clinically variable and genetically heterogeneous developmental disorder characterized by postnatally reduced growth, distinctive facial dysmorphism, cardiac defects and variable cognitive deficits. Other associated features include ectodermal and skeletal defects, cryptorchidism, lymphatic dysplasias, bleeding tendency, and, rarely, predisposition to hematologic malignancies during childhood. NS is caused by mutations in the PTPN11, SOS1, KRAS, RAF1, BRAF and MEK1 (MAP2K1) genes, accounting for approximately 70% of affected individuals. SHP2 (encoded by PTPN11), SOS1, BRAF, RAF1 and MEK1 positively contribute to RAS-MAPK signaling, and possess complex autoinhibitory mechanisms that are impaired by mutations. Similarly, reduced GTPase activity or increased guanine nucleotide release underlie the aberrant signal flow through the MAPK cascade promoted by most KRAS mutations. More recently, a single missense mutation in SHOC2, which encodes a cytoplasmic scaffold positively controlling RAF1 activation, has been discovered to cause a closely related phenotype previously termed Noonan-like syndrome with loose anagen hair. This mutation promotes aberrantly acquired N-myristoylation of the protein, resulting in its constitutive targeting to the plasma membrane and dysregulated function. PTPN11, BRAF and RAF1 mutations also account for approximately 95% of LEOPARD syndrome, a condition which resembles NS phenotypically but is characterized by multiple lentigines dispersed throughout the body, café-au-lait spots, and a higher prevalence of electrocardiographic conduction abnormalities, obstructive cardiomyopathy and sensorineural hearing deficits. These recent discoveries demonstrate that the substantial phenotypic variation characterizing NS and related conditions can be ascribed, in part, to the gene mutated and even the specific molecular lesion involved.

Collaboration


Dive into the Giuseppe Zampino's collaboration.

Top Co-Authors

Avatar

Marco Tartaglia

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Chiara Leoni

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce D. Gelb

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Bruno Dallapiccola

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Francesca Pantaleoni

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Francesca Lepri

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Isabella Vasta

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Pierpaolo Mastroiacovo

The Catholic University of America

View shared research outputs
Researchain Logo
Decentralizing Knowledge