Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppina Giglia-Mari is active.

Publication


Featured researches published by Giuseppina Giglia-Mari.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4

Pierre-Olivier Mari; Bogdan I. Florea; Stephan Persengiev; Nicole S. Verkaik; Hennie T. Brüggenwirth; Mauro Modesti; Giuseppina Giglia-Mari; Karel Bezstarosti; Jeroen Demmers; Theo M. Luider; Adriaan B. Houtsmuller; Dik C. van Gent

DNA double-strand break (DSB) repair by nonhomologous end joining (NHEJ) requires the assembly of several proteins on DNA ends. Although biochemical studies have elucidated several aspects of the NHEJ reaction mechanism, much less is known about NHEJ in living cells, mainly because of the inability to visualize NHEJ repair proteins at DNA damage. Here we provide evidence that a pulsed near IR laser can produce DSBs without any visible alterations in the nucleus, and we show that NHEJ proteins accumulate in the irradiated areas. The levels of DSBs and Ku accumulation diminished in time, showing that this approach allows us to study DNA repair kinetics in vivo. Remarkably, the Ku heterodimers on DNA ends were in dynamic equilibrium with Ku70/80 in solution, showing that NHEJ complex assembly is reversible. Accumulation of XRCC4/ligase IV on DSBs depended on the presence of Ku70/80, but not DNA-PKCS. We detected a direct interaction between Ku70 and XRCC4 that could explain these requirements. Our results suggest that this assembly constitutes the core of the NHEJ reaction and that XRCC4 may serve as a flexible tether between Ku70/80 and ligase IV.


Nature Genetics | 2004

A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A

Giuseppina Giglia-Mari; Frédéric Coin; Jeffrey A. Ranish; Deborah Hoogstraten; Arjan F. Theil; Nils Wijgers; Nicolaas G. J. Jaspers; Anja Raams; Manuela Argentini; P.J. van der Spek; Elena Botta; Miria Stefanini; Jean-Marc Egly; Ruedi Aebersold; Jan H.J. Hoeijmakers; Wim Vermeulen

DNA repair-deficient trichothiodystrophy (TTD) results from mutations in the XPD and XPB subunits of the DNA repair and transcription factor TFIIH. In a third form of DNA repair–deficient TTD, called group A, none of the nine subunits encoding TFIIH carried mutations; instead, the steady-state level of the entire complex was severely reduced. A new, tenth TFIIH subunit (TFB5) was recently identified in yeast. Here, we describe the identification of the human TFB5 ortholog and its association with human TFIIH. Microinjection of cDNA encoding TFB5 (GTF2H5, also called TTDA) corrected the DNA-repair defect of TTD-A cells, and we identified three functional inactivating mutations in this gene in three unrelated families with TTD-A. The GTF2H5 gene product has a role in regulating the level of TFIIH. The identification of a new evolutionarily conserved subunit of TFIIH implicated in TTD-A provides insight into TFIIH function in transcription, DNA repair and human disease.


Cold Spring Harbor Perspectives in Biology | 2011

DNA Damage Response

Giuseppina Giglia-Mari; Angelika Zotter; Wim Vermeulen

Structural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network of DNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance processes, and cell-cycle checkpoints safeguard genomic integrity. Like transcription and replication, DDR is a chromatin-associated process that is generally tightly controlled in time and space. As DNA damage can occur at any time on any genomic location, a specialized spatio-temporal orchestration of this defense apparatus is required.


American Journal of Human Genetics | 2007

First Reported Patient with Human ERCC1 Deficiency Has Cerebro-Oculo-Facio-Skeletal Syndrome with a Mild Defect in Nucleotide Excision Repair and Severe Developmental Failure

Nicolaas G. J. Jaspers; Anja Raams; Margherita Silengo; Nils Wijgers; Laura J. Niedernhofer; Andria Rasile Robinson; Giuseppina Giglia-Mari; Deborah Hoogstraten; Wim J. Kleijer; Jan H.J. Hoeijmakers; Wim Vermeulen

Nucleotide excision repair (NER) is a genome caretaker mechanism responsible for removing helix-distorting DNA lesions, most notably ultraviolet photodimers. Inherited defects in NER result in profound photosensitivity and the cancer-prone syndrome xeroderma pigmentosum (XP) or two progeroid syndromes: Cockayne and trichothiodystrophy syndromes. The heterodimer ERCC1-XPF is one of two endonucleases required for NER. Mutations in XPF are associated with mild XP and rarely with progeria. Mutations in ERCC1 have not been reported. Here, we describe the first case of human inherited ERCC1 deficiency. Patient cells showed moderate hypersensitivity to ultraviolet rays and mitomycin C, yet the clinical features were very severe and, unexpectedly, were compatible with a diagnosis of cerebro-oculo-facio-skeletal syndrome. This discovery represents a novel complementation group of patients with defective NER. Further, the clinical severity, coupled with a relatively mild repair defect, suggests novel functions for ERCC1.


The EMBO Journal | 2009

Coordination of dual incision and repair synthesis in human nucleotide excision repair

Lidija Staresincic; Adebanke F. Fagbemi; Jacqueline H. Enzlin; Audrey M. Gourdin; Nils Wijgers; Isabelle Dunand-Sauthier; Giuseppina Giglia-Mari; Stuart G. Clarkson; Wim Vermeulen; Orlando D. Schärer

Nucleotide excision repair (NER) requires the coordinated sequential assembly and actions of the involved proteins at sites of DNA damage. Following damage recognition, dual incision 5′ to the lesion by ERCC1‐XPF and 3′ to the lesion by XPG leads to the removal of a lesion‐containing oligonucleotide of about 30 nucleotides. The resulting single‐stranded DNA (ssDNA) gap on the undamaged strand is filled in by DNA repair synthesis. Here, we have asked how dual incision and repair synthesis are coordinated in human cells to avoid the exposure of potentially harmful ssDNA intermediates. Using catalytically inactive mutants of ERCC1‐XPF and XPG, we show that the 5′ incision by ERCC1‐XPF precedes the 3′ incision by XPG and that the initiation of repair synthesis does not require the catalytic activity of XPG. We propose that a defined order of dual incision and repair synthesis exists in human cells in the form of a ‘cut‐patch‐cut‐patch’ mechanism. This mechanism may aid the smooth progression through the NER pathway and contribute to genome integrity.


PLOS Biology | 2006

Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells.

Giuseppina Giglia-Mari; Catherine Miquel; Arjan F. Theil; Pierre-Olivier Mari; Deborah Hoogstraten; Jessica M.Y. Ng; Christoffel Dinant; Jan H.J. Hoeijmakers; Wim Vermeulen

Transcription/repair factor IIH (TFIIH) is essential for RNA polymerase II transcription and nucleotide excision repair (NER). This multi-subunit complex consists of ten polypeptides, including the recently identified small 8-kDa trichothiodystrophy group A (TTDA)/ hTFB5 protein. Patients belonging to the rare neurodevelopmental repair syndrome TTD-A carry inactivating mutations in the TTDA/hTFB5 gene. One of these mutations completely inactivates the protein, whereas other TFIIH genes only tolerate point mutations that do not compromise the essential role in transcription. Nevertheless, the severe NER-deficiency in TTD-A suggests that the TTDA protein is critical for repair. Using a fluorescently tagged and biologically active version of TTDA, we have investigated the involvement of TTDA in repair and transcription in living cells. Under non-challenging conditions, TTDA is present in two distinct kinetic pools: one bound to TFIIH, and a free fraction that shuttles between the cytoplasm and nucleus. After induction of NER-specific DNA lesions, the equilibrium between these two pools dramatically shifts towards a more stable association of TTDA to TFIIH. Modulating transcriptional activity in cells did not induce a similar shift in this equilibrium. Surprisingly, DNA conformations that only provoke an abortive-type of NER reaction do not result into a more stable incorporation of TTDA into TFIIH. These findings identify TTDA as the first TFIIH subunit with a primarily NER-dedicated role in vivo and indicate that its interaction with TFIIH reflects productive NER.


Molecular Cell | 2010

A Ubiquitin-Binding Domain in Cockayne Syndrome B Required for Transcription-Coupled Nucleotide Excision Repair

Roy Anindya; Pierre-Olivier Mari; Ulrik Kristensen; Hanneke Kool; Giuseppina Giglia-Mari; Leon H.F. Mullenders; Maria Fousteri; Wim Vermeulen; Jean-Marc Egly; Jesper Q. Svejstrup

Summary Transcription-coupled nucleotide excision repair (TC-NER) allows RNA polymerase II (RNAPII)-blocking lesions to be rapidly removed from the transcribed strand of active genes. Defective TCR in humans is associated with Cockayne syndrome (CS), typically caused by defects in either CSA or CSB. Here, we show that CSB contains a ubiquitin-binding domain (UBD). Cells expressing UBD-less CSB (CSBdel) have phenotypes similar to those of cells lacking CSB, but these can be suppressed by appending a heterologous UBD, so ubiquitin binding is essential for CSB function. Surprisingly, CSBdel remains capable of assembling nucleotide excision repair factors and repair synthesis proteins around damage-stalled RNAPII, but such repair complexes fail to excise the lesion. Together, our results indicate an essential role for protein ubiquitylation and CSBs UBD in triggering damage incision during TC-NER and allow us to integrate the function of CSA and CSB in a model for the process.


Molecular Biology of the Cell | 2008

Effect of Proliferating Cell Nuclear Antigen Ubiquitination and Chromatin Structure on the Dynamic Properties of the Y-family DNA Polymerases

Simone Sabbioneda; Audrey M. Gourdin; Catherine M. Green; Angelika Zotter; Giuseppina Giglia-Mari; Adriaan B. Houtsmuller; Wim Vermeulen; Alan R. Lehmann

Y-family DNA polymerases carry out translesion synthesis past damaged DNA. DNA polymerases (pol) eta and iota are usually uniformly distributed through the nucleus but accumulate in replication foci during S phase. DNA-damaging treatments result in an increase in S phase cells containing polymerase foci. Using photobleaching techniques, we show that poleta is highly mobile in human fibroblasts. Even when localized in replication foci, it is only transiently immobilized. Although ubiquitination of proliferating cell nuclear antigen (PCNA) is not required for the localization of poleta in foci, it results in an increased residence time in foci. poliota is even more mobile than poleta, both when uniformly distributed and when localized in foci. Kinetic modeling suggests that both poleta and poliota diffuse through the cell but that they are transiently immobilized for approximately 150 ms, with a larger proportion of poleta than poliota immobilized at any time. Treatment of cells with DRAQ5, which results in temporary opening of the chromatin structure, causes a dramatic immobilization of poleta but not poliota. Our data are consistent with a model in which the polymerases are transiently probing the DNA/chromatin. When DNA is exposed at replication forks, the polymerase residence times increase, and this is further facilitated by the ubiquitination of PCNA.


PLOS Biology | 2009

Differentiation Driven Changes in the Dynamic Organization of Basal Transcription Initiation

Giuseppina Giglia-Mari; Arjan F. Theil; Pierre-Olivier Mari; Sophie Mourgues; Julie Nonnekens; Lise O. Andrieux; Jan de Wit; Catherine Miquel; Nils Wijgers; Alex Maas; Maria Fousteri; Jan H.J. Hoeijmakers; Wim Vermeulen

A novel mouse model reveals that the dynamic behavior of transcription factors can vary considerably between different cells of an organism.


PLOS Genetics | 2013

Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack.

Valentyn Oksenych; Alexander Zhovmer; Salim Ziani; Pierre-Olivier Mari; Jitka Eberova; Tiziana Nardo; Miria Stefanini; Giuseppina Giglia-Mari; Jean-Marc Egly; Frédéric Coin

UV-induced DNA damage causes repression of RNA synthesis. Following the removal of DNA lesions, transcription recovery operates through a process that is not understood yet. Here we show that knocking-out of the histone methyltransferase DOT1L in mouse embryonic fibroblasts (MEFDOT1L) leads to a UV hypersensitivity coupled to a deficient recovery of transcription initiation after UV irradiation. However, DOT1L is not implicated in the removal of the UV-induced DNA damage by the nucleotide excision repair pathway. Using FRAP and ChIP experiments we established that DOT1L promotes the formation of the pre-initiation complex on the promoters of UV-repressed genes and the appearance of transcriptionally active chromatin marks. Treatment with Trichostatin A, relaxing chromatin, recovers both transcription initiation and UV-survival. Our data suggest that DOT1L secures an open chromatin structure in order to reactivate RNA Pol II transcription initiation after a genotoxic attack.

Collaboration


Dive into the Giuseppina Giglia-Mari's collaboration.

Top Co-Authors

Avatar

Wim Vermeulen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Arjan F. Theil

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Nils Wijgers

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre-Olivier Mari

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Jan H.J. Hoeijmakers

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Anja Raams

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Deborah Hoogstraten

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Pierre-Olivier Mari

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge