Giuseppina Pace
Istituto Italiano di Tecnologia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giuseppina Pace.
Angewandte Chemie | 2008
Violetta Ferri; Mark Elbing; Giuseppina Pace; Michael D. Dickey; Michael Zharnikov; Paolo Samorì; Marcel Mayor; Maria Anita Rampi
Inspired by the complex molecular machines found in nature, chemists have developed much simpler molecular motors. Among them, several systems incorporating azobenzene have been proposed, which exploit the reversible trans–cis isomerization triggered by light or an electric field for applications such as optical data-storage devices, switchable supramolecular cavities, and sensors. Recently, it has been demonstrated that the photoisomerization process of individual polymer chains incorporating azobenzenes can express mechanical work. In light of these findings, one can foresee self-assembled monolayers (SAMs) of aromatic azobenzenes as molecular systems able to express forces of unprecedented magnitude by exploiting a collective subnanometer structural change. We recently designed a rigid and fully conjugated azobenzene exposing a thiol anchoring group, which was able to form a tightly packed SAM on Au(111) (SAMAZO). Scanning tunneling microscopy (STM) studies revealed that upon light irradiation of the chemisorbed SAMs, a collective isomerization of entire molecular-crystalline domains occurred with an outstandingly high directionality. Based on these results, a cooperative nature of the isomerization of adjacent AZO molecules has been proposed. Furthermore, the joint action of the molecules in the SAM provides an ideal system as a potential “cargo” lifter. Herein, we show that, upon irradiation, azobenzene SAMs incorporated in a junction between an Au(111) surface and a mercury drop are able to 1) lift the “heavy” Hg drop, and 2) reversibly photoswitch the current flowing through the junction (Figure 1). Current–voltage (I–V) characteristics averaged over more than 30 junctions incorporating AZO SAMs in the trans and the cis conformations are shown in Figure 2a. The SAMAZO in the cis conformation was obtained with extremely high yield (98%) upon irradiation by UV light of the SAMAZO initially formed by the trans conformer. The difference in the measured currents, which amounts to about 1.4 orders of magnitude, is in agreement with a through-bond tunneling mechanism described by Equation (1).
Proceedings of the National Academy of Sciences of the United States of America | 2007
Giuseppina Pace; Violetta Ferri; Christian Grave; Mark Elbing; Carsten von Hänisch; Michael Zharnikov; Marcel Mayor; Maria Anita Rampi; Paolo Samorì
Photochromic systems can convert light energy into mechanical energy, thus they can be used as building blocks for the fabrication of prototypes of molecular devices that are based on the photomechanical effect. Hitherto a controlled photochromic switch on surfaces has been achieved either on isolated chromophores or within assemblies of randomly arranged molecules. Here we show by scanning tunneling microscopy imaging the photochemical switching of a new terminally thiolated azobiphenyl rigid rod molecule. Interestingly, the switching of entire molecular 2D crystalline domains is observed, which is ruled by the interactions between nearest neighbors. This observation of azobenzene-based systems displaying collective switching might be of interest for applications in high-density data storage.
Journal of the American Chemical Society | 2008
Jeffrey M. Mativetsky; Giuseppina Pace; Mark Elbing; Maria Anita Rampi; Marcel Mayor; Paolo Samorì
Conductance switching associated with the photoisomerization of azobenzene-based (Azo) molecules was observed in nanoscopic metal-molecule-metal junctions. The junctions were formed by using a conducting atomic force microscope (C-AFM) approach, where a metallic AFM tip was used to electrically contact a gold-supported Azo self-assembled monolayer. The measured 30-fold increase in conductance is consistent with the expected decrease in tunneling barrier length resulting from the conformational change of the Azo molecule.
Energy and Environmental Science | 2015
Chen Tao; Stefanie Neutzner; Letizia Colella; Sergio Marras; Ajay Ram Srimath Kandada; Marina Gandini; Michele De Bastiani; Giuseppina Pace; Liberato Manna; Mario Caironi; Chiara Bertarelli; Annamaria Petrozza
We present here a planar perovskite solar cell with a stabilized power conversion efficiency (PCE) of 17.6% at the maximum power point and a PCE of 17% extracted from quasi-static J–V with an open-circuit voltage of 1.11 V. Such excellent figures of merit can be achieved by engineering a solution-processed electron buffer layer that does not require high temperature steps. A compact thin film of perovskite absorber is grown onto a PCBM-based electron extraction layer by implementing a novel two-step procedure which preserves the soluble organic interlayer during the deposition of successive layers. We demonstrate that efficient charge extraction is the key for high steady state efficiency in perovskite solar cells with a highly integrable architecture.
Journal of the American Chemical Society | 2011
Junfeng Fang; Bodo H. Wallikewitz; Feng Gao; Guoli Tu; Christian Müller; Giuseppina Pace; Richard H. Friend; Wilhelm T. S. Huck
A new zwitterionic conjugated polyelectrolyte without free counterions has been used as an electron injection material in polymer light-emitting diodes. Both the efficiency and maximum brightness were considerably improved in comparison with standard Ca cathode devices. The devices showed very fast response times, indicating that the improved performance is, in addition to hole blocking, due to dipoles at the cathode interface, which facilitate electron injection.
Nature Communications | 2015
Sadir Gabriele Bucella; Alessandro Luzio; Eliot Gann; Lars Thomsen; Christopher R. McNeill; Giuseppina Pace; Andrea Perinot; Zhihua Chen; Antonio Facchetti; Mario Caironi
High-mobility semiconducting polymers offer the opportunity to develop flexible and large-area electronics for several applications, including wearable, portable and distributed sensors, monitoring and actuating devices. An enabler of this technology is a scalable printing process achieving uniform electrical performances over large area. As opposed to the deposition of highly crystalline films, orientational alignment of polymer chains, albeit commonly achieved by non-scalable/slow bulk alignment schemes, is a more robust approach towards large-area electronics. By combining pre-aggregating solvents for formulating the semiconductor and by adopting a room temperature wired bar-coating technique, here we demonstrate the fast deposition of submonolayers and nanostructured films of a model electron-transporting polymer. Our approach enables directional self-assembling of polymer chains exhibiting large transport anisotropy and a mobility up to 6.4 cm2 V−1 s−1, allowing very simple device architectures to operate at 3.3 MHz. Thus, the proposed deposition strategy is exceptionally promising for mass manufacturing of high-performance polymer circuits.
Advanced Materials | 2014
Giuseppina Pace; Andrea Grimoldi; Dario Natali; Marco Sampietro; Jessica E. Coughlin; Guillermo C. Bazan; Mario Caironi
All-organic, fully-printed and semitransparent photodetectors with a broad wavelength band response, based on a ternary blend comprising narrow band-gap small molecules, are demonstrated. The ternary blend with a semiconducting polymer allows for the optimal printing of small molecules, suppressing strong phase segregation, and uncontrolled crystallization. The insertion of a suitable interlayer enables the adoption of polymer, transparent, top and bottom printed electrodes, thus making light detection possible from both device sides.
Energy and Environmental Science | 2013
Abhishek Kumar; Giuseppina Pace; Artem A. Bakulin; Junfeng Fang; Peter K. H. Ho; Wilhelm T. S. Huck; Richard H. Friend; Neil C. Greenham
We report that we can enhance the performance of polymer photovoltaics by introducing materials with dipoles at the donor–acceptor interface of the polymer solar cells. We use a zwitterionic conjugated polyelectrolyte (ZCPE) as an interfacial layer in a model bi-layer system consisting of donor and acceptor polymers. We find an increase in short-circuit current and fill factor when a 2 nm thin layer of ZCPE is introduced between donor and acceptor polymers. Absorption of light in the ZCPE interlayer contributes to the photocurrent, and, as revealed by time-resolved pump–push optical spectroscopy, the interlayer reduces the probability of electron–hole recombination at the donor–acceptor interface.
ChemPhysChem | 2009
Giuseppina Pace; Artur R. Stefankiewicz; Jack M. Harrowfield; Jean-Marie Lehn; Paolo Samorì
Self-assembly of a bis(hydrazone) chelating ligand functionalized with octadecyloxy substituents is described, as well as the reproducible thermally activated self-assembly of its metallosupramolecular cationic Co(II) [2x2] grid-type complex, on a highly oriented pyrolitic graphite (HOPG) substrate. Scanning tunnelling microscopy measurements at the solid/liquid interface reveal that the grid units of the annealed films are oriented edge-on to the basal plane of the HOPG, which indicates that the influence of the octadecyl chains is not sufficient to tie the grids into a face-on orientation. To gain a detailed understanding of the self-assembly behaviour of the grid on HOPG, the results for the grid itself have been compared to those of its constituent ligands.
Journal of Physical Chemistry B | 2013
Simon Gélinas; James Kirkpatrick; Ian A. Howard; Kerr Johnson; Mark W. Wilson; Giuseppina Pace; Richard H. Friend; Carlos Silva
We investigate the properties of long-lived species in F8BT films through time-resolved photoluminescence (PL) measurements at room temperature and 10 K. The kinetics consist of an initial exponential decay (τ = 2.26 ns) followed by a weak power-law decay (I(t) [proportionality] t(-1)) up to at least 1 ms, both of which depend weakly on temperature. From fluence-dependent PL and ultrafast transient absorption (TA) measurements, we confirm that this emission arises from the recombination of geminate charge-pairs generated through singlet-singlet annihilation. This behavior is a consequence of the donor-acceptor nature of this polymer, which enhances singlet-singlet annihilation and facilitates the formation of long-lived geminate-pairs from energetic singlet states.