Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppina Salzano is active.

Publication


Featured researches published by Giuseppina Salzano.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Nanotechnologies to use bisphosphonates as potent anticancer agents: the effects of zoledronic acid encapsulated into liposomes.

Monica Marra; Giuseppina Salzano; Carlo Leonetti; Pierfrancesco Tassone; Marco Scarsella; Silvia Zappavigna; Teresa Calimeri; Renato Franco; Giuseppina Liguori; Giovanni Cigliana; Roberta Ascani; Maria Immacolata La Rotonda; Alberto Abbruzzese; Pierosandro Tagliaferri; Michele Caraglia; Giuseppe De Rosa

UNLABELLED Zoledronic acid (ZOL) is a potent amino-bisphosphonate used for the treatment of bone metastases with recently reported antitumor activity. However, the short plasma half-life and rapid accumulation in bone limits the use of ZOL as an antitumor agent in extraskeletal tissues. Therefore, we developed stealth liposomes encapsulating ZOL (LipoZOL) to increase extraskeletal drug availability. Compared to free ZOL, LipoZOL induced a stronger inhibition of growth of a range of different cancer cell lines in vitro. LipoZOL also caused significantly larger inhibition of tumor growth and increased the overall survival in murine models of human prostate cancer and multiple myeloma, in comparison with ZOL. Moreover, a strong inhibition of vasculogenetic events without evidence of necrosis in the tumor xenografts from prostate cancer was recorded after treatment with LipoZOL. We demonstrated both antitumor activity and tolerability of LipoZOL in preclinical animal models of both solid and hematopoietic malignancies, providing a rationale for early exploration of use of LipoZOL as a potential anticancer agent in cancer patients. FROM THE CLINICAL EDITOR The short plasma half-life and rapid accumulation in bone limits the use of zoledronic acid as an antitumor agent in extraskeletal tissues. Therefore, stealth liposomes encapsulating ZOL (LipoZOL) have been developed to increase extraskeletal drug availability.


Biotechnology Advances | 2012

New self-assembly nanoparticles and stealth liposomes for the delivery of zoledronic acid: a comparative study

Monica Marra; Giuseppina Salzano; Carlo Leonetti; Manuela Porru; Renato Franco; Silvia Zappavigna; Giuseppina Liguori; Gerardo Botti; Paolo Chieffi; Monica Lamberti; Giovanni Vitale; Alberto Abbruzzese; Maria Immacolata La Rotonda; Giuseppe De Rosa; Michele Caraglia

Zoledronic acid (ZOL) is a drug whose potent anti-cancer activity is limited by its short plasma half-life and rapid uptake and accumulation within bone. We have recently proposed new delivery systems to avoid ZOL accumulation into the bone, thus improving extra-skeletal bioavailability. In this work, we have compared the technological and anti-cancer features of either ZOL-containing self-assembly PEGylated nanoparticles (NPs) or ZOL-encapsulating PEGylated liposomes (LIPO-ZOL). ZOL-containing NPs showed superior technological characteristics in terms of mean diameter, size distribution, and ZOL encapsulation efficiency, compared to LIPO-ZOL. Moreover, the anti-cancer activity of NPs in nude mice xenografted with prostate cancer PC3 cells was higher than that one induced by LIPO-ZOL. In addition, NPs induced the complete remission of tumour xenografts and an increase of survival time higher than that one observed with LIPO-ZOL. It has also to be considered that PC3 tumour xenografts were almost completely resistant to the anti-cancer effects induced by free ZOL. Both nanotechnological products did not induce toxic effects not affecting the mice weight nor inducing deaths. Moreover, the histological examination of some vital organs such as liver, kidney and spleen did not find any changes in terms of necrotic effects or modifications in the inflammatory infiltrate. On the other hand, NPs but not LIPO-ZOL caused a statistically significant reduction of the tumour associated macrophages (TAM) in tumour xenografts. This effect was paralleled by a significant increase of both necrotic and apoptotic indexes. The effects of the NPs were also higher in terms of neo-angiogenesis inhibition. These results suggest the future preclinical development of ZOL-encapsulating NPs in the treatment of human cancer.


International Journal of Pharmaceutics | 2011

Self-assembly nanoparticles for the delivery of bisphosphonates into tumors.

Giuseppina Salzano; Monica Marra; Manuela Porru; Silvia Zappavigna; Alberto Abbruzzese; M.I. La Rotonda; Carlo Leonetti; Michele Caraglia; G. De Rosa

Bisphosphonates (BPs) are molecules able to induce apoptosis in several cancer cell lines. However, their short half-life and the rapid uptake and accumulation within bone, limit its use as antitumor agent for extra-skeletal malignancies. Here we proposed a new delivery system to avoid BP accumulation into the bone, thus improving extra-skeletal bioavailability. In this work, we used the zoledronic acid (ZOL), a third generation bisphosphonate, able to induce apoptosis at micromolar concentration. We developed ZOL-containing self-assembly PEGylated nanoparticles (NPs) based on ZOL complexes with calcium phosphate NPs (CaPZ NPs) and cationic liposomes. PEGylation was achieved by two different strategies. CaPZ NPs were covered with PEGylated liposomes (pre-PLCaPZ NPs); alternatively, CaPZ NPs were previously mixed with cationic liposomes and then PEGylated by post-insertion method (post-PLCaPZ NPs). The NPs were fully characterized in terms of mean diameter and size distribution, morphology, ZOL loading, antiproliferative effect on different cell lines. Pre-PLCaPZ NPs showed the best technological characteristics, with a narrow size distribution and a high ZOL loading. Moreover, on different cancer cell lines, these NPs enhanced the antiproliferative effect of ZOL. Finally, in an animal model of prostate cancer, a significant reduction of tumor growth was achieved with pre-PLCaPZ NPs, while the tumor was unaffected by ZOL in solution.


Cancer Letters | 2014

Polymeric micelles containing reversibly phospholipid-modified anti-survivin siRNA: a promising strategy to overcome drug resistance in cancer

Giuseppina Salzano; R Riehle; Gemma Navarro; Federico Perche; G. De Rosa; Vt Torchilin

The discovery that survivin, a small anti-apoptotic protein, is involved in chemoresistance, opens a new scenario to overcome the drug resistance in cancer. It was shown that siRNA can efficiently inhibit the expression of survivin in cancer cells. However, the clinical use of siRNA is still hampered by an unfavorable pharmacokinetic profile. To address this problem, earlier we developed a novel system to deliver siRNA into cancer cells. Namely, we reversibly modified the survivin siRNA with a phosphothioethanol (PE) portion via a reducible disulfide bond and incorporated the resulting siRNA-S-S-PE conjugate into nanosized polyethyelene glycol 2000-phosphatidyl ethanolamine (PEG2000-PE)-based polymeric micelles (PM), obtaining survivin siRNA PM. The activity of these nanopreparations was evaluated by survivin protein down-regulation, tumor cell growth inhibition, and chemosensitization of the treated tumor cells to paclitaxel (PXL). We found a significant decrease of cell viability and down-regulation of survivin protein levels after treatment with survivin siRNA PM in several cancer cell lines. In addition, the down-regulation of survivin by treating cells with survivin siRNA PM, elicited a significant sensitization of the cells to PXL, in both sensitive and resistant cancer cell lines. Finally, we demonstrated successful co-delivery of PXL and survivin siRNA in the same PM leading to superior therapeutic activity compared to their sequential administration. Our results support the use of this new platform for the treatment of the most aggressive tumors.


Molecular Cancer Therapeutics | 2015

Multifunctional Polymeric Micelles Co-loaded with Anti–Survivin siRNA and Paclitaxel Overcome Drug Resistance in an Animal Model of Ovarian Cancer

Giuseppina Salzano; Gemma Navarro; Malav Trivedi; Giuseppe De Rosa; Vladimir P. Torchilin

Ovarian cancer is a dreadful disease estimated to be the second most common gynecologic malignancy worldwide. Its current therapy, based on cytoreductive surgery followed by the combination of platinum and taxanes, is frequently complicated by the onset of multidrug resistance (MDR). The discovery that survivin, a small antiapoptotic protein, is involved in chemoresistance provided a new prospect to overcome MDR in cancer, because siRNA could be used to inhibit the expression of survivin in cancer cells. With this in mind, we have developed self-assembly polymeric micelles (PM) able to efficiently co-load an anti–survivin siRNA and a chemotherapeutic agent, such as paclitaxel (PXL; survivin siRNA/PXL PM). Previously, we have successfully demonstrated that the downregulation of survivin by using siRNA-containing PM strongly sensitizes different cancer cells to paclitaxel. Here, we have evaluated the applicability of the developed multifunctional PM in vivo. Changes in survivin expression, therapeutic efficacy, and biologic effects of the nanopreparation were investigated in an animal model of paclitaxel-resistant ovarian cancer. The results obtained in mice xenografed with SKOV3-tr revealed a significant downregulation of survivin expression in tumor tissues together with a potent anticancer activity of survivin siRNA/PXL PM, while the tumors remained unaffected with the same quantity of free paclitaxel. These promising results introduce a novel type of nontoxic and easy-to-obtain nanodevice for the combined therapy of siRNA and anticancer agents in the treatment of chemoresistant tumors. Mol Cancer Ther; 14(4); 1075–84. ©2015 AACR.


Current Drug Metabolism | 2012

Nanotechnologies: a strategy to overcome blood-brain barrier.

Giuseppe De Rosa; Giuseppina Salzano; Michele Caraglia; Alberto Abbruzzese

The possibility to treat central nervous system (CNS) disorders is strongly limited by the poor access of many therapeutic agent to the target tissues. This is mainly due to the presence of the blood-brain barrier (BBB), formed by a complex interplay of endothelial cells, astrocyte and pericytes, through which only selected molecules can passively diffuse to reach CNS. Drug pharmacokinetics and biodistribution can be changed by using nanotechnology, in order to improve drug accumulation into the action site and to limit the drug release in the healthy tissues. When the CNS diseases are characterised by BBB altered permeability, an enhanced drug delivery into the brain can be achieved by using nanocarriers. Moreover, modification of nanocarrier surface with specific endogenous or exogenous ligands can promote enhanced BBB crossing, also in case of unaltered endothelium. This review summarizes the most meaningful advances in the field of nanotechnology for brain delivery of therapeutics.


Current Cancer Drug Targets | 2012

Nanotech Revolution for the Anti-Cancer Drug Delivery through Blood- Brain-Barrier

Michele Caraglia; G. De Rosa; Giuseppina Salzano; D. Santini; Monica Lamberti; P. Sperlongano; Angela Lombardi; Alberto Abbruzzese; R. Addeo

Nanotechnology-based drug delivery was born as a chance for pharmaceutical weapons to be delivered in the body sites where drug action is required. Specifically, the incorporation of anti-cancer agents in nanodevices of 100-300 nm allows their delivery in tissues that have a fenestrated vasculature and a reduced lymphatic drainage. These two features are typical of neoplastic tissues and, therefore, allow the accumulation of nanostructured devices in tumours. An important issue of anti-cancer pharmacological strategies is the overcoming of anatomical barriers such as the bloodbrain- barrier (BBB) that protects brain from toxicological injuries but, at the same time, makes impossible for most of the pharmacological agents with anti-cancer activity to reach tumour cells placed in the brain and derived from either primary tumours or metastases. In fact, only highly lipophilic molecules can passively diffuse through BBB to reach central nervous system (CNS). Another possibility is to use nanotechnological approaches as powerful tools to across BBB, by both prolonging the plasma half-life of the drugs and crossing fenestrations of BBB damaged by brain metastases. Moreover, modifications of nanocarrier surface with specific endogenous or exogenous ligands can promote the crossing of intact BBB as in the case of primary brain tumours. This aim can be achieved through the binding of the nanodevices to carriers or receptors expressed by the endothelial cells of BBB and that can favour the internalization of the nanostructured devices delivering anti-cancer drugs. This review summarizes the most meaningful advances in the field of nanotechnologies for brain delivery of drugs.


Small | 2016

Mixed Nanosized Polymeric Micelles as Promoter of Doxorubicin and miRNA-34a Co-Delivery Triggered by Dual Stimuli in Tumor Tissue.

Giuseppina Salzano; Daniel F. Costa; Can Sarisozen; Ed Luther; George Mattheolabakis; Pooja P. Dhargalkar; Vladimir P. Torchilin

Dual stimuli-sensitive mixed polymeric micelles (MM) are developed for co-delivery of the endogenous tumor suppressor miRNA-34a and the chemotherapeutic agent doxorubicin (Dox) into cancer cells. The novelty of the system resides in two stimuli-sensitive prodrugs, a matrix metalloproteinase 2 (MMP2)-sensitive Dox conjugate and a reducing agent (glutathione, GSH)-sensitive miRNA-34a conjugate, self-assembled in a single particle decorated with a polyethylene glycol corona for longevity, and a cell-penetrating peptide (TATp) for enhanced intracellular delivery. The MMP2-sensitivity of the system results in threefold higher cytotoxicity in MMP2-overexpressing HT1080 cells compared to low MMP2-expressing MCF7 cells. Cellular internalization of Dox increases by more than 70% after inclusion of TATp to the formulation. MMP2-sensitive MM also inhibits proliferation and migration of HT1080 cells. Moreover, GSH-sensitive MM allows for an efficient downregulation of Bcl2, survivin, and notch1 (65%, 55%, and 46%, respectively) in HT1080 cells. Combination of both conjugates in dual sensitive MM reduces HT1080 cell viability to 40% and expression of Bcl2 and survivin. Finally, 50% cell death is observed in 3D models of tumor mass. The results confirm the potential of the MM to codeliver miRNA-34a and doxorubicin triggered by dual stimuli inherent of tumor tissues.


European Journal of Pharmaceutics and Biopharmaceutics | 2012

PLGA microspheres encapsulating siRNA anti-TNFalpha: Efficient RNAi-mediated treatment of arthritic joints

Jessy Presumey; Giuseppina Salzano; Gabriel Courties; M. Shires; Frederique Ponchel; Christian Jorgensen; Florence Apparailly; G. De Rosa

The aim of this study was to investigate potentialities of poly(dl-lactide-co-glycolide) (PLGA) microspheres for the delivery of small interfering RNAs (siRNAs) against tumor necrosis factor α (TNF-α) to achieve prolonged and efficient inhibition of TNF-α for the treatment of rheumatoid arthritis (RA). PLGA microspheres were prepared by a modified multiple emulsion-solvent evaporation method. The formulations were characterized in terms of morphology, mean diameter and siRNAs distribution, encapsulation efficiency, and in vitro release kinetics. The efficiency of this system was then evaluated both in vitro and in vivo using the murine monocytic cell line J774 and a pre-clinical model of RA, respectively. siRNA-encapsulating PLGA microspheres were characterized by a high encapsulation efficiency and a slow and prolonged anti-TNF-α siRNAs. Our results provide evidence that, upon intra-articular administration, PLGA microspheres slowly releasing siRNAs effectively inhibited the expression of TNF-α in arthritic joints. Our system might represent an alternative strategy for the design of novel anti-rheumatic therapies based on the use of RNA interference in RA.


Journal of drug delivery | 2013

Bisphosphonates and cancer: what opportunities from nanotechnology?

Giuseppe De Rosa; Gabriella Misso; Giuseppina Salzano; Michele Caraglia

Bisphosphonates (BPs) are synthetic analogues of naturally occurring pyrophosphate compounds. They are used in clinical practice to inhibit bone resorption in bone metastases, osteoporosis, and Pagets disease. BPs induce apoptosis because they can be metabolically incorporated into nonhydrolyzable analogues of adenosine triphosphate. In addition, the nitrogen-containing BPs (N-BPs), second-generation BPs, act by inhibiting farnesyl diphosphate (FPP) synthase, a key enzyme of the mevalonate pathway. These molecules are able to induce apoptosis of a number of cancer cells in vitro. Moreover, antiangiogenic effect of BPs has also been reported. However, despite these promising properties, BPs rapidly accumulate into the bone, thus hampering their use to treat extraskeletal tumors. Nanotechnologies can represent an opportunity to limit BP accumulation into the bone, thus increasing drug level in extraskeletal sites of the body. Thus, nanocarriers encapsulating BPs can be used to target macrophages, to reduce angiogenesis, and to directly kill cancer cell. Moreover, nanocarriers can be conjugated with BPs to specifically deliver anticancer agent to bone tumors. This paper describes, in the first part, the state-of-art on the BPs, and, in the following part, the main studies in which nanotechnologies have been proposed to investigate new indications for BPs in cancer therapy.

Collaboration


Dive into the Giuseppina Salzano's collaboration.

Top Co-Authors

Avatar

Giuseppe De Rosa

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Michele Caraglia

College of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Carlo Leonetti

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Alberto Abbruzzese

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Sara Lusa

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Marra

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Silvia Zappavigna

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Manuela Porru

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

G. De Rosa

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge