Gladys N. Hermida
Facultad de Ciencias Exactas y Naturales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gladys N. Hermida.
Journal of Morphology | 2012
Andrés E. Brunetti; Gladys N. Hermida; Julián Faivovich
Many anuran species are characterized by sexually dimorphic skin glands. These glands often are concentrated on specific areas, such as the mental region, flanks, or the nuptial pads. We studied the histology and histochemistry of mental and lateral glands in Hypsiboas punctatus, and compared them to skin from other body regions. We describe four types of dermal glands, two types of mucous and two types of serous glands. The mucous glands are formed by a single layered epithelium. The mucocytes surrounding a central lumen are filled with polyhedral granules. Ordinary mucous glands are small sized glands with cubical epithelium, mucoid content, and small granules. Specialized mucous glands are characterized by a larger size, a columnar epithelium, a proteinaceous content and larger granules. Both types of serous glands are syncytial and share some structural features including size, shape, and morphology of secretory granules. However, ordinary and specialized serous glands differ in their histochemical properties, size and appearance of secretory granules, and glandular outlets. The specialized type of mucous glands in H. punctatus resembles most SDSGs described in anurans, whereas the presence of specialized serous glands that are sexually dimorphic is less common. Both specialized glands occur only in mental and lateral regions of males, whereas ordinary mucous and ordinary serous glands occur in males and females. J. Morphol. 2012.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2016
Eleonora Regueira; Camila Dávila; Gladys N. Hermida
Avoiding predation is critical to survival of animals; chemical defenses represent a common strategy among amphibians. In this study, we examined histologically the morphology of skin glands and types of secretions related to chemical skin defense during ontogeny of Rhinella arenarum. Prior to metamorphic climax the epidermis contains typical bufonid giant cells producing a mucous substance supposedly involved in triggering a flight reaction of the tadpole school. An apical layer of alcianophilic mucus covers the epidermis, which could produce the unpleasant taste of bufonid tadpoles. Giant cells disappear by onset of metamorphic climax, when multicellular glands start developing, but the apical mucous layer remains. By the end of climax, neither the granular glands of the dorsum nor the parotoid regions are completely developed. Conversely, by the end of metamorphosis the mucous glands are partially developed and secrete mucus. Adults have at least three types of granular glands, which we designate type A (acidophilic), type B (basophilic) and ventral (mucous). Polymorphic granular glands distribute differently in the body: dorsal granular glands between warts and in the periphery of parotoids contain protein; granular glands of big warts and in the central region of parotoids contain catecholamines, lipids, and glycoconjugates, whereas ventral granular glands produce acidic glycoconjugates. Mucous glands produce both mucus and proteins. Results suggest that in early juveniles the chemical skin defense mechanisms are not functional. Topographical differences in adult skin secretions suggest that granular glands from the big warts in the skin produce similar toxins to the parotoid glands. Anat Rec, 299:141–156, 2016.
Journal of Morphology | 2017
Eleonora Regueira; Camila Dávila; Alina Grisel Sassone; María E. Ailín O'Donohoe; Gladys N. Hermida
Chemical defenses in amphibians are a common antipredatory and antimicrobial strategy related to the presence of dermal glands that synthesize and store toxic or unpalatable substances. Glands are either distributed throughout the skin or aggregated in multiglandular structures, being the parotoids the most ubiquitous macrogland in toads of Bufonidae. Even though dermal glands begin to develop during late‐larval stages, many species, including Rhinella arenarum, have immature glands by the end of metamorphosis, and their post‐metamorphic growth is unknown. Herein, we compared the post‐metamorphic development of parotoids and dorsal glands by histological and allometric studies in a size series of R. arenarum. Histological and histochemical studies to detect proteins, acidic glycoconjugates, and catecholamines, showed that both, parotoids and dorsal glands, acquire characteristics of adults in individuals larger than 50 mm; that is, a moment in which the cryptic coloration disappears. Parotoid height increased allometrically as a function of body size, whereas the size of small dorsal glands decreased with body size. The number of glands in the dorsum was not linearly related to body size, appearing to be an individual characteristic. Only adult specimens had intraepithelial granular glands in the duct of the largest glands of the parotoids. Since toxic secretions accumulate in the central glands of parotoids, allometric growth of parotoids may translate into greater protection from predators in the largest animals. Conversely, large glands in the dorsum, which produce a proteinaceous secretion of unknown function, grow isometrically to body size. Some characteristics, like intraepithelial glands in the ducts and basophilic glands in the dorsum, are limited to adults.
Journal of Morphology | 2016
Julio César Cruz; Daiana P. Ferraro; Alejandro Farías; Julio Sérgio dos Santos; Shirlei Maria Recco-Pimentel; Julián Faivovich; Gladys N. Hermida
This study describes the spermatozoa of 10 of the 15 species of the Neotropical frog genus Pleurodema through transmission electron microscopy. The diversity of oviposition modes coupled with a recent phylogenetic hypothesis of Pleurodema makes it an interesting group for the study of ultrastructural sperm evolution in relation to fertilization environment and egg‐clutch structure. We found that Pleurodema has an unusual variability in sperm morphology. The more variable structures were the acrosomal complex, the midpiece, and the tail. The acrosomal complex has all the structures commonly reported in hyloid frogs but with different degree of development of the subacrosomal cone. Regarding the midpiece, the variability is given by the presence or absence of the mitochondrial collar. Finally, the tail is the most variable structure, ranging from single (only axoneme) to more complex (presence of paraxonemal rod, cytoplasmic sheath, and undulating membrane), with the absence of the typical axial fiber present in hyloid frogs, also shared with some other genera of Leiuperinae. J. Morphol. 277:957–977, 2016.
Journal of Anatomy | 2016
Andrés E. Brunetti; Gladys N. Hermida; Mariana G. Iurman; Julián Faivovich
Serous (granular or venom) glands occur in the skin of almost all species of adult amphibians, and are thought to be the source of a great diversity of chemical compounds. Despite recent advances in their chemistry, odorous volatile substances are compounds that have received less attention, and until now no study has attempted to associate histological data with the presence of these molecules in amphibians, or in any other vertebrate. Given the recent identification of 40 different volatile compounds from the skin secretions of H. pulchellus (a treefrog species that releases a strong odour when handled), we examined the structure, ultrastructure, histochemistry, and distribution of skin glands of this species. Histological analysis from six body regions reveals the presence of two types of glands that differ in their distribution. Mucous glands are homogeneously distributed, whereas serous glands are more numerous in the scapular region. Ultrastructural results indicate that electron‐translucent vesicles observed within granules of serous glands are similar to those found in volatile‐producing glands from insects and also with lipid vesicles from different organisms. Association among lipids and volatiles is also evidenced from chemical results, which indicate that at least some of the volatile components in H. pulchellus probably originate within the metabolism of fatty acids or the mevalonate pathway. As odorous secretions are often considered to be secreted under stress situations, the release of glandular content was assessed after pharmacological treatments, epinephrine administrated in vivo and on skin explants, and through surface electrical stimulation. Serous glands responded to all treatments, generally through an obvious contraction of myoepithelial cells that surround their secretory portion. No response was observed in mucous glands. Considering these morpho‐functional results, along with previous identification of volatiles from H. pulchellus and H. riojanus after electrical stimulation, we suggest that the electron‐translucent inclusions found within the granules of serous glands likely are the store sites of volatile compounds and/or their precursors. Histochemical and glandular distribution analyses in five other species of frogs of the hylid tribe Cophomantini, revealed a high lipid content in all the species, whereas a heterogeneous distribution of serous glands is only observed in species of the H. pulchellus group. The distribution pattern of serous glands in members of this species group, and the odorous volatile secretions are probably related to defensive functions.
Journal of Morphology | 2017
Clara Volonteri; Diego A. Barrasso; Leonardo Cotichelli; Néstor G. Basso; Gladys N. Hermida
Vision is one of the main sensory systems in amphibians, and the eye structure is highly associated with habitat conditions. The ontogeny, as well as the adult structure, of the eye has been studied in only a few species. The life change after metamorphosis is accompanied by changes in the visual environment. The aim of this work is to describe the eye ontogeny of Pleurodema bufoninum and to compare it with that of Pleurodema somuncurense. Specimens of both Pleurodema species were processed for histology analysis at different stages of development, including the tadpole, postmetamorphic, and adult forms. Eyes in both Pleurodema species are composed of the 3 tunics, tunica fibrosa, tunica vasculosa, and tunica interna, and the lens. Additionally, in both, the iris presents a projection on its dorsal and ventral free ends that screens the cornea. This structure has been reported in the eye of several anuran species and is called the umbraculum, meniscus or pupillary nodule. Our results show that the structures related to light capture (retina and lens) appear early in larval life, while the components of the terrestrial‐life eye (scleral cartilage, specialized cornea, eyelids, nictitating membrane, and Harderians gland) do not develop until the metamorphic climax, when the tadpole leaves the water. The adult eyes of P. bufoninum and P. somuncurense are very similar in structure and development.
Helgoland Marine Research | 2009
S. Zabala; Gladys N. Hermida; Juliana Giménez
Acta Zoologica | 2013
Daiana P. Ferraro; Pascual E. Topa; Gladys N. Hermida
Biological Journal of The Linnean Society | 2015
Andrés E. Brunetti; Gladys N. Hermida; Maria Celeste Luna; Adriana Maria Giorgi Barsotti; Carlos Jared; Marta M. Antoniazzi; Mauricio Rivera-Correa; Bianca V. M. Berneck; Julián Faivovich
Acta Zoologica | 2009
Gladys N. Hermida; Alejandro Farías