Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glaucia Mendes Souza is active.

Publication


Featured researches published by Glaucia Mendes Souza.


Plant Biotechnology Journal | 2010

Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content

Alessandro Jaquiel Waclawovsky; Paloma Mieko Sato; Carolina G. Lembke; Paul H. Moore; Glaucia Mendes Souza

An increasing number of plant scientists, including breeders, agronomists, physiologists and molecular biologists, are working towards the development of new and improved energy crops. Research is increasingly focused on how to design crops specifically for bioenergy production and increased biomass generation for biofuel purposes. The most important biofuel to date is bioethanol produced from sugars (sucrose and starch). Second generation bioethanol is also being targeted for studies to allow the use of the cell wall (lignocellulose) as a source of carbon. If a crop is to be used for bioenergy production, the crop should be high yielding, fast growing, low lignin content and requiring relatively small energy inputs for its growth and harvest. Obtaining high yields in nonprime agricultural land is a key for energy crop development to allow sustainability and avoid competition with food production. Sugarcane is the most efficient bioenergy crop of tropical and subtropical regions, and biotechnological tools for the improvement of this crop are advancing rapidly. We focus this review on the studies of sugarcane genes associated with sucrose content, biomass and cell wall metabolism and the preliminary physiological characterization of cultivars that contrast for sugar and biomass yield.


Plant Physiology | 2009

GRASSIUS: A Platform for Comparative Regulatory Genomics across the Grasses

Alper Yilmaz; Milton Yutaka Nishiyama; Bernardo Garcia Fuentes; Glaucia Mendes Souza; Daniel Janies; John C. Gray; Erich Grotewold

Transcription factors (TFs) are major players in gene regulatory networks and interactions between TFs and their target genes furnish spatiotemporal patterns of gene expression. Establishing the architecture of regulatory networks requires gathering information on TFs, their targets in the genome, and the corresponding binding sites. We have developed GRASSIUS (Grass Regulatory Information Services) as a knowledge-based Web resource that integrates information on TFs and gene promoters across the grasses. In its initial implementation, GRASSIUS consists of two separate, yet linked, databases. GrassTFDB holds information on TFs from maize (Zea mays), sorghum (Sorghum bicolor), sugarcane (Saccharum spp.), and rice (Oryza sativa). TFs are classified into families and phylogenetic relationships begin to uncover orthologous relationships among the participating species. This database also provides a centralized clearinghouse for TF synonyms in the grasses. GrassTFDB is linked to the grass TFome collection, which provides clones in recombination-based vectors corresponding to full-length open reading frames for a growing number of grass TFs. GrassPROMDB contains promoter and cis-regulatory element information for those grass species and genes for which enough data are available. The integration of GrassTFDB and GrassPROMDB will be accomplished through GrassRegNet as a first step in representing the architecture of grass regulatory networks. GRASSIUS can be accessed from www.grassius.org.


Plant Cell and Environment | 2008

Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane

Amanda P. De Souza; Marília Gaspar; Emerson Alves Da Silva; Eugênio César Ulian; Alessandro Jaquiel Waclawovsky; Milton Yutaka Nishiyama; Renato Vicentini dos Santos; Marcelo Menossi Teixeira; Glaucia Mendes Souza; Marcos S. Buckeridge

Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO(2)]. The effects of increased [CO(2)] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (approximately 370 ppm) and elevated (approximately 720 ppm) [CO(2)] during 50 weeks in open-top chambers. The plants grown under elevated CO(2) showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO(2)]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO(2). The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO(2)], and that this might be related, as previously observed for maize and sorghum, to transient drought stress.


BMC Genomics | 2007

Signal transduction-related responses to phytohormones and environmental challenges in sugarcane

Flávia Riso Rocha; Flávia Stal Papini-Terzi; Milton Yutaka Nishiyama; Ricardo Zn Vêncio; Renato Vicentini; Rodrigo Dc Duarte; Vicente E. De Rosa; Fabiano Vinagre; Carla Barsalobres; Ane H. Medeiros; Fabiana Aparecida Rodrigues; Eugênio César Ulian; Sonia Marli Zingaretti; João Antonio Galbiatti; Raul Santin Almeida; Antonio Figueira; Adriana Silva Hemerly; Marcio C. Silva-Filho; Marcelo Menossi; Glaucia Mendes Souza

BackgroundSugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N2-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate). The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins.ResultsAdopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases.ConclusionAn extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified. Additionally, the protein kinases were annotated based on a phylogenetic approach. The experimental design and statistical analysis applied proved robust to unravel genes associated with a diverse array of conditions attributing novel functions to previously unknown or undefined genes. The data consolidated in the SUCAST database resource can guide further studies and be useful for the development of improved sugarcane varieties.


BMC Genomics | 2009

Sugarcane genes associated with sucrose content

Flávia Stal Papini-Terzi; Flávia Riso Rocha; Ricardo Z. N. Vêncio; Juliana de Maria Felix; Diana Santos Branco; Alessandro Jaquiel Waclawovsky; Luiz Eduardo Vieira Del Bem; Carolina G. Lembke; Maximiller D. L. Costa; Milton Yutaka Nishiyama; Renato Vicentini; Michel Vincentz; Eugênio César Ulian; Marcelo Menossi; Glaucia Mendes Souza

Background -Sucrose content is a highly desirable trait in sugarcane as the worldwide demand for cost-effective biofuels surges. Sugarcane cultivars differ in their capacity to accumulate sucrose and breeding programs routinely perform crosses to identify genotypes able to produce more sucrose. Sucrose content in the mature internodes reach around 20% of the culms dry weight. Genotypes in the populations reflect their genetic program and may display contrasting growth, development, and physiology, all of which affect carbohydrate metabolism. Few studies have profiled gene expression related to sugarcanes sugar content. The identification of signal transduction components and transcription factors that might regulate sugar accumulation is highly desirable if we are to improve this characteristic of sugarcane plants.Results -We have evaluated thirty genotypes that have different Brix (sugar) levels and identified genes differentially expressed in internodes using cDNA microarrays. These genes were compared to existing gene expression data for sugarcane plants subjected to diverse stress and hormone treatments. The comparisons revealed a strong overlap between the drought and sucrose-content datasets and a limited overlap with ABA signaling. Genes associated with sucrose content were extensively validated by qRT-PCR, which highlighted several protein kinases and transcription factors that are likely to be regulators of sucrose accumulation. The data also indicate that aquaporins, as well as lignin biosynthesis and cell wall metabolism genes, are strongly related to sucrose accumulation. Moreover, sucrose-associated genes were shown to be directly responsive to short term sucrose stimuli, confirming their role in sugar-related pathways.Conclusion -Gene expression analysis of sugarcane populations contrasting for sucrose content indicated a possible overlap with drought and cell wall metabolism processes and suggested signaling and transcriptional regulators to be used as molecular markers in breeding programs. Transgenic research is necessary to further clarify the role of the genes and define targets useful for sugarcane improvement programs based on transgenic plants.


International Journal of Plant Genomics | 2008

Sugarcane Functional Genomics: Gene Discovery for Agronomic Trait Development

Marcelo Menossi; Marcio C. Silva-Filho; Michel Vincentz; M.-A. Van-Sluys; Glaucia Mendes Souza

Sugarcane is a highly productive crop used for centuries as the main source of sugar and recently to produce ethanol, a renewable bio-fuel energy source. There is increased interest in this crop due to the impending need to decrease fossil fuel usage. Sugarcane has a highly polyploid genome. Expressed sequence tag (EST) sequencing has significantly contributed to gene discovery and expression studies used to associate function with sugarcane genes. A significant amount of data exists on regulatory events controlling responses to herbivory, drought, and phosphate deficiency, which cause important constraints on yield and on endophytic bacteria, which are highly beneficial. The means to reduce drought, phosphate deficiency, and herbivory by the sugarcane borer have a negative impact on the environment. Improved tolerance for these constraints is being sought. Sugarcanes ability to accumulate sucrose up to 16% of its culm dry weight is a challenge for genetic manipulation. Genome-based technology such as cDNA microarray data indicates genes associated with sugar content that may be used to develop new varieties improved for sucrose content or for traits that restrict the expansion of the cultivated land. The genes can also be used as molecular markers of agronomic traits in traditional breeding programs.


Mediators of Inflammation | 2003

mRNA expression and release of interleukin-8 induced by serum amyloid A in neutrophils and monocytes

Fernanda Pereira Ribeiro; Cristiane Jaciara Furlaneto; Elaine Hatanaka; Wesley Bueno Ribeiro; Glaucia Mendes Souza; Marco A. Cassatella; Ana Campa

The acute phase response is a systemic reaction to inflammatory processes characterized by multiple physiological adaptations, including the hepatic synthesis of acute-phase proteins. In humans, serum amyloid A (SAA) is one of the most prominent of these proteins. Despite the huge increase of serum levels of SAA in inflammation, its biological role remains to be elucidated, even though SAA is undoubtedly active in neutrophils. In a previous study, we reported that SAA induces the release of tumor necrosis factor-alpha, interleukin (IL)-1beta and IL-8 from human blood neutrophils. Here, we extend our earlier study, focusing on the effect of SAA on neutrophil IL-8 transcription and on the signaling pathways involved. We demonstrate herein that SAA, in relatively low concentrations (0.4-100 microg/ml) compared with those found in plasma in inflammatory conditions, induces a dose-dependent release of IL-8 from neutrophils. The p38 mitogen-activated protein kinase inhibitor SB 203580 inhibits the IL-8 mRNA expression and the release of protein from neutrophils. The release of IL-8 from SAA-stimulated neutrophils is strongly suppressed by the addition of N-acetyl-l-cysteine, alpha-mercaptoethanol, glutathione, and dexamethasone. SAA also induces IL-8 expression and release from monocytes. In conclusion, SAA appears to be an important mediator of the inflammatory process, possibly contributing to the pool of IL-8 produced in chronic diseases, which may play a role in degenerative diseases.


Tropical Plant Biology | 2011

The Sugarcane Genome Challenge: Strategies for Sequencing a Highly Complex Genome

Glaucia Mendes Souza; Hélène Bergès; Stéphanie Bocs; Rosanne E. Casu; Angélique D’Hont; João Eduardo Ferreira; Robert J Henry; Ray Ming; Bernard Potier; Marie-Anne Van Sluys; Michel Vincentz; Andrew H. Paterson

Sugarcane cultivars derive from interspecific hybrids obtained by crossing Saccharum officinarum and Saccharum spontaneum and provide feedstock used worldwide for sugar and biofuel production. The importance of sugarcane as a bioenergy feedstock has increased interest in the generation of new cultivars optimised for energy production. Cultivar improvement has relied largely on traditional breeding methods, which may be limited by the complexity of inheritance in interspecific polyploid hybrids, and the time-consuming process of selection of plants with desired agronomic traits. In this sense, molecular genetics can assist in the process of developing improved cultivars by generating molecular markers that can be used in the breeding process or by introducing new genes into the sugarcane genome. For meeting each of these, and additional goals, biotechnologists would benefit from a reference genome sequence of a sugarcane cultivar. The sugarcane genome poses challenges that have not been addressed in any prior sequencing project, due to its highly polyploid and aneuploid genome structure with a complete set of homeologous genes predicted to range from 10 to 12 copies (alleles) and to include representatives from each of two different species. Although sugarcane’s monoploid genome is about 1 Gb, its highly polymorphic nature represents another significant challenge for obtaining a genuine assembled monoploid genome. With a rich resource of expressed-sequence tag (EST) data in the public domain, the present article describes tools and strategies that may aid in the generation of a reference genome sequence.


Gcb Bioenergy | 2009

Improving sugarcane for biofuel: engineering for an even better feedstock

Eric Lam; James Shine; Jorge A. da Silva; Michael Lawton; Stacy A. Bonos; Martín Calviño; Helaine Carrer; Marcio C. Silva-Filho; Neil C. Glynn; Zane R. Helsel; Jiong Ma; Edward P. Richard; Glaucia Mendes Souza; Ray Ming

Sugarcane is a proven biofuel feedstock and accounts for about 40% of the biofuel production worldwide. It has a more favorable energy input/output ratio than that of corn, the other major biofuel feedstock. The rich resource of genetic diversity and the plasticity of autopolyploid genomes offer a wealth of opportunities for the application of genomics and technologies to address fundamental questions in sugarcane towards maximizing biomass production. In a workshop on sugarcane engineering held at Rutgers University, we identified research areas and emerging technologies that could have significant impact on sugarcane improvement. Traditional plant physiological studies and standardized phenotypic characterization of sugarcane are essential for dissecting the developmental processes and patterns of gene expression in this complex polyploid species. Breeder friendly DNA markers associated with target traits will enhance selection efficiency and shorten the long breeding cycles. Integration of cold tolerance from Saccharum spontaneum and Miscanthus has the potential to expand the geographical range of sugarcane production from tropical and subtropical regions to temperate zones. The Flex‐stock and mix‐stock concepts could be solutions for sustaining local biorefineries where no single biofuel feedstock could provide consistent year‐round supplies. The ever increasing capacities of genomics and biotechnologies pave the way for fully exploring these potentials to optimize sugarcane for biofuel production.


Current Opinion in Biotechnology | 2012

Sugarcane improvement: how far can we go?

Maximiller Dal-Bianco; Monalisa Sampaio Carneiro; Carlos Takeshi Hotta; Roberto Giacomini Chapola; Hermann Paulo Hoffmann; Antonio Augusto Franco Garcia; Glaucia Mendes Souza

In recent years, efforts to improve sugarcane have focused on the development of biotechnology for this crop. It has become clear that sugarcane lacks tools for the biotechnological route of improvement and that the initial efforts in sequencing ESTs had limited impact for breeding. Until recently, the models used by breeders in statistical genetics approaches have been developed for diploid organisms, which are not ideal for a polyploid genome such as that of sugarcane. Breeding programs are dealing with decreasing yield gains. The contribution of multiple alleles to complex traits such as yield is a basic question underlining the breeding efforts that could only be addressed by the development of specific tools for this grass. However, functional genomics has progressed and gene expression profiling is leading to the definition of gene networks. The sequencing of the sugarcane genome, which is underway, will greatly contribute to numerous aspects of research on grasses. We expect that both the transgenic and the marker-assisted route for sugarcane improvement will contribute to increased sugar, stress tolerance, and higher yield and that the industry for years to come will be able to rely on sugarcane as the most productive energy crop.

Collaboration


Dive into the Glaucia Mendes Souza's collaboration.

Top Co-Authors

Avatar

Marcelo Menossi

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renato Vicentini

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Eugênio César Ulian

Centro de Tecnologia Canavieira

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monalisa Sampaio Carneiro

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar

Robert J Henry

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge