Glauco Tarozzo
Istituto Italiano di Tecnologia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Glauco Tarozzo.
European Journal of Neuroscience | 2002
Glauco Tarozzo; Marilena Campanella; Michela Ghiani; Alessandro Bulfone; Massimiliano Beltramo
Fractalkine is a neuronally expressed chemokine that acts through its G‐protein‐coupled receptor CX3CR1, localized on microglial and immune cells. Fractalkine might be involved in neuroinflammatory processes secondary to neuronal damage, which normally occur in a time frame of days after ischaemia. We evaluated by in situ hybridization and immunohistochemistry the expression of fractalkine and CX3CR1 in the rat brain, after a transient occlusion of the middle cerebral artery. We found that at 12 h after ischaemia neuronal fractalkine expression was transiently increased in scattered necrotic neurons of the cortex and lost from the ischaemic striatum. At 24 and 48 h after ischaemia, fractalkine immunoreactivity was strongly increased in morphologically intact cortical neurons of the ischaemic penumbra where also the stress‐inducible HSP‐72 was strongly up‐regulated. The intensity of fractalkine immunoreactivity of neurons in the penumbra returned to basal levels at 7 days after ischaemia. Fractalkine synthesis was also induced in endothelial cells of the infarcted area, at 48 h and 7 days after ischaemia. CX3CR1 expression was detected in the activated microglial cells of the ischaemic tissue 24 and 48 h after ischaemia, and became strongly up‐regulated in macrophages/phagocytic microglia inside the infarcted tissue 7 days after ischaemia. These data suggest that fractalkine may participate in the activation and chemoattraction of microglia into the infarcted tissue, and contribute to the control of leucocyte trafficking from blood vessels into the injured area.
Pain | 2013
Oscar Sasso; Guillermo Moreno-Sanz; Cataldo Martucci; Natalia Realini; Mauro Dionisi; Luisa Mengatto; Andrea Duranti; Glauco Tarozzo; Giorgio Tarzia; Marco Mor; Rosalia Bertorelli; Angelo Reggiani; Daniele Piomelli
TOC summary The N‐acylethanolamine acid amidase inhibitor ARN077 exerts profound antinociceptive effects in animal pain models by enhancing endogenous lipid signaling at peroxisome proliferator‐activated receptor‐α. N‐acylethanolamine acid amidase may be a new target for analgesic drugs. ABSTRACT Fatty acid ethanolamides (FAEs), which include palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), are endogenous agonists of peroxisome proliferator‐activated receptor‐α (PPAR‐α) and important regulators of the inflammatory response. They are degraded in macrophages by the lysosomal cysteine amidase, N‐acylethanolamine acid amidase (NAAA). Previous studies have shown that pharmacological inhibition of NAAA activity suppresses macrophage activation in vitro and causes marked anti‐inflammatory effects in vivo, which is suggestive of a role for NAAA in the control of inflammation. It is still unknown, however, whether NAAA‐mediated FAE deactivation might regulate pain signaling. The present study examined the effects of ARN077, a potent and selective NAAA inhibitor recently disclosed by our group, in rodent models of hyperalgesia and allodynia caused by inflammation or nerve damage. Topical administration of ARN077 attenuated, in a dose‐dependent manner, heat hyperalgesia and mechanical allodynia elicited in mice by carrageenan injection or sciatic nerve ligation. The antinociceptive effects of ARN077 were prevented by the selective PPAR‐α antagonist GW6471 and did not occur in PPAR‐α–deficient mice. Furthermore, topical ARN077 reversed the allodynia caused by ultraviolet B radiation in rats, and this effect was blocked by pretreatment with GW6471. Sciatic nerve ligation or application of the proinflammatory phorbol ester 12‐O‐tetradecanoylphorbol 13‐acetate decreased FAE levels in sciatic nerve and skin tissue, respectively. ARN077 reversed these biochemical effects. The results identify ARN077 as a potent inhibitor of intracellular NAAA activity, which is active in vivo by topical administration. The findings further suggest that NAAA regulates peripheral pain initiation by interrupting endogenous FAE signaling at PPAR‐α.
Journal of Medicinal Chemistry | 2012
Elena Simoni; Simona Daniele; Giovanni Bottegoni; Daniela Pizzirani; Maria Letizia Trincavelli; Luca Goldoni; Glauco Tarozzo; Angelo Reggiani; Claudia Martini; Daniele Piomelli; Carlo Melchiorre; Michela Rosini; Andrea Cavalli
Herein we report on a novel series of multitargeted compounds obtained by linking together galantamine and memantine. The compounds were designed by taking advantage of the crystal structures of acetylcholinesterase (AChE) in complex with galantamine derivatives. Sixteen novel derivatives were synthesized, using spacers of different lengths and chemical composition. The molecules were then tested as inhibitors of AChE and as binders of the N-methyl-d-aspartate (NMDA) receptor (NMDAR). Some of the new compounds were nanomolar inhibitors of AChE and showed micromolar affinities for NMDAR. All compounds were also tested for selectivity toward NMDAR containing the 2B subunit (NR2B). Some of the new derivatives showed a micromolar affinity for NR2B. Finally, selected compounds were tested using a cell-based assay to measure their neuroprotective activity. Three of them showed a remarkable neuroprotective profile, inhibiting the NMDA-induced neurotoxicity at subnanomolar concentrations (e.g., 5, named memagal, IC(50) = 0.28 nM).
PLOS ONE | 2013
Valeria Capurro; Perrine Busquet; João P. Lopes; Rosalia Bertorelli; Glauco Tarozzo; Maria Laura Bolognesi; Daniele Piomelli; Angelo Reggiani; Andrea Cavalli
Alzheimers disease (AD) is characterized by progressive loss of cognitive function, dementia and altered behavior. Over 30 million people worldwide suffer from AD and available therapies are still palliative rather than curative. Recently, Memoquin (MQ), a quinone-bearing polyamine compound, has emerged as a promising anti-AD lead candidate, mainly thanks to its multi-target profile. MQ acts as an acetylcholinesterase and β-secretase-1 inhibitor, and also possesses anti-amyloid and anti-oxidant properties. Despite this potential interest, in vivo behavioral studies with MQ have been limited. Here, we report on in vivo studies with MQ (acute and sub-chronic treatments; 7–15 mg/kg per os) carried out using two different mouse models: i) scopolamine- and ii) beta-amyloid peptide- (Aβ-) induced amnesia. Several aspects related to memory were examined using the T-maze, the Morris water maze, the novel object recognition, and the passive avoidance tasks. At the dose of 15 mg/kg, MQ was able to rescue all tested aspects of cognitive impairment including spatial, episodic, aversive, short and long-term memory in both scopolamine- and Aβ-induced amnesia models. Furthermore, when tested in primary cortical neurons, MQ was able to fully prevent the Aβ-induced neurotoxicity mediated by oxidative stress. The results support the effectiveness of MQ as a cognitive enhancer, and highlight the value of a multi-target strategy to address the complex nature of cognitive dysfunction in AD.
Journal of Medicinal Chemistry | 2012
Angelo D. Favia; Damien Habrant; Rita Scarpelli; Marco Migliore; Clara Albani; Sine Mandrup Bertozzi; Mauro Dionisi; Glauco Tarozzo; Daniele Piomelli; Andrea Cavalli; Marco De Vivo
Pain and inflammation are major therapeutic areas for drug discovery. Current drugs for these pathologies have limited efficacy, however, and often cause a number of unwanted side effects. In the present study, we identify the nonsteroidal anti-inflammatory drug carprofen as a multitarget-directed ligand that simultaneously inhibits cyclooxygenase-1 (COX-1), COX-2, and fatty acid amide hydrolase (FAAH). Additionally, we synthesized and tested several derivatives of carprofen, sharing this multitarget activity. This may result in improved analgesic efficacy and reduced side effects (Naidu et al. J. Pharmacol. Exp. Ther.2009, 329, 48-56; Fowler, C. J.; et al. J. Enzyme Inhib. Med. Chem.2012, in press; Sasso et al. Pharmacol. Res.2012, 65, 553). The new compounds are among the most potent multitarget FAAH/COX inhibitors reported so far in the literature and thus may represent promising starting points for the discovery of new analgesic and anti-inflammatory drugs.
Journal of Medicinal Chemistry | 2013
Stefano Ponzano; Fabio Bertozzi; Luisa Mengatto; Mauro Dionisi; Andrea Armirotti; Elisa Romeo; Anna Berteotti; Claudio Fiorelli; Glauco Tarozzo; Angelo Reggiani; Andrea Duranti; Giorgio Tarzia; Marco Mor; Andrea Cavalli; Daniele Piomelli; Tiziano Bandiera
N-Acylethanolamine acid amidase (NAAA) is a lysosomal cysteine hydrolase involved in the degradation of saturated and monounsaturated fatty acid ethanolamides (FAEs), a family of endogenous lipid agonists of peroxisome proliferator-activated receptor-α, which include oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). The β-lactone derivatives (S)-N-(2-oxo-3-oxetanyl)-3-phenylpropionamide (2) and (S)-N-(2-oxo-3-oxetanyl)-biphenyl-4-carboxamide (3) inhibit NAAA, prevent FAE hydrolysis in activated inflammatory cells, and reduce tissue reactions to pro-inflammatory stimuli. Recently, our group disclosed ARN077 (4), a potent NAAA inhibitor that is active in vivo by topical administration in rodent models of hyperalgesia and allodynia. In the present study, we investigated the structure-activity relationship (SAR) of threonine-derived β-lactone analogues of compound 4. The main results of this work were an enhancement of the inhibitory potency of β-lactone carbamate derivatives for NAAA and the identification of (4-phenylphenyl)-methyl-N-[(2S,3R)-2-methyl-4-oxo-oxetan-3-yl]carbamate (14q) as the first single-digit nanomolar inhibitor of intracellular NAAA activity (IC50 = 7 nM on both rat NAAA and human NAAA).
ACS Medicinal Chemistry Letters | 2012
Andrea Armirotti; Elisa Romeo; Stefano Ponzano; Luisa Mengatto; Mauro Dionisi; Claudia Karacsonyi; Fabio Bertozzi; Gianpiero Garau; Glauco Tarozzo; Angelo Reggiani; Tiziano Bandiera; Giorgio Tarzia; Marco Mor; Daniele Piomelli
The cysteine amidase N-acylethanolamine acid amidase (NAAA) is a member of the N-terminal nucleophile class of enzymes and a potential target for anti-inflammatory drugs. We investigated the mechanism of inhibition of human NAAA by substituted β-lactones. We characterized pharmacologically a representative member of this class, ARN077, and showed, using high-resolution liquid chromatography-tandem mass spectrometry, that this compound forms a thioester bond with the N-terminal catalytic cysteine in human NAAA.
Brain and behavior | 2013
João P. Lopes; Glauco Tarozzo; Angelo Reggiani; Daniele Piomelli; Andrea Cavalli
The combination of memantine, an N‐methyl‐d‐aspartate (NMDA) receptor antagonist, with an acetylcholinesterase inhibitor (AChEI) is the current standard of care in Alzheimers disease (AD). Galantamine, an AChEI currently marketed for the treatment of AD, exerts memory‐enhancing and neuroprotective effects via activation of nicotinic acetylcholine receptors (nAChRs). Here, we investigated the neuroprotective properties of galantamine in primary cultures of rat cortical neurons when given alone or in combination with memantine. In agreement with previous findings, we found that memantine was fully effective in reversing NMDA toxicity at concentrations of 2.5 and 5 μmol/L. Galantamine also completely reversed NMDA toxicity at a concentration of 5 μmol/L. The α7 and α4β2 nAChR antagonists, methyllycaconitine, and dihydro‐β‐erythroidine blocked the neuroprotective effect of galantamine, demonstrating the involvement of nAChRs. The combination of memantine with galantamine produced synergistic actions, such that full neuroprotective efficacy, was obtained at inactive concentrations of memantine (0.1 μmol/L) and galantamine (1 μmol/L). A similar potentiation was also observed when memantine was replaced with ifenprodil, suggesting a possible involvement of the NR2B subunit of the NMDA receptor. In summary, our study reports for the first time at a cellular level that memantine and galantamine interact on the same excitotoxic cascade and that the combination of these two drugs can result in a remarkable neuroprotective effect.
Behavioural Brain Research | 2005
Rosalia Bertorelli; Silva Fredduzzi; Glauco Tarozzo; Marilena Campanella; Robert I. Grundy; Massimiliano Beltramo; Angelo Reggiani
A number of studies suggest melanocortin (MC) system involvement in nociceptive modulation. Although the mechanism through which this occurs is still unknown, experimental evidence would suggest a primary role of MC4 receptors. To further investigate the implication of this MC receptor subtype in chronic pain, we have studied the effects of several MC antagonists on spinal nerve ligation-induced nociceptive behavior in rats. The intrathecal injection of synthetic antagonists with different selectivity to MC4 receptor and of an endogenous antagonist (Agouti related protein; AgRP) reduced mechanical allodynia in neuropathic rats, as measured by von Frey hair test. Treatments produced an anti-allodynic effect at the dose of 1.5 nmol (25-30% maximum possible effect, MPE, P<0.05). To further investigate the possible physiological role of AgRP in pain modulation we studied its expression in both sham and neuropathic rat spinal cord and dorsal root ganglia (DRG) by quantitative real time PCR and immunohistochemistry. AgRP was present in both spinal cord and DRG, and its expression, was unchanged in neuropathic animals. In conclusion MC4 receptor antagonists with different selectivity profile, induce anti-allodynic effects in one of the most relevant neuropathic pain model. In addition the expression of AgRP in spinal cord and DRG suggests an endogenous tonic inhibitory control on MC system activity. In pathological conditions this steady control could be insufficient to cope with an over activated MC system leading to increase in nociception. These data suggest that targeting MC4 with synthetic antagonists could restore the balance and hence reduce nociception.
ACS Chemical Biology | 2014
Marianna Iorio; Oscar Sasso; Sonia I. Maffioli; Rosalia Bertorelli; Paolo Monciardini; Margherita Sosio; Fabiola Bonezzi; Maria Summa; Cristina Brunati; Roberta Bordoni; Giorgio Corti; Glauco Tarozzo; Daniele Piomelli; Angelo Reggiani; Stefano Donadio
Among the growing family of ribosomally synthesized, post-translationally modified peptides, particularly intriguing are class III lanthipeptides containing the triamino acid labionin. In the course of a screening program aimed at finding bacterial cell wall inhibitors, we discovered a new lanthipeptide produced by an Actinoplanes sp. The molecule, designated NAI-112, consists of 22 amino acids and contains an N-terminal labionin and a C-terminal methyl-labionin. Unique among lanthipeptides, it carries a 6-deoxyhexose moiety N-linked to a tryptophan residue. Consistently, the corresponding gene cluster encodes, in addition to the LanKC enzyme characteristic of this lanthipeptide class, a glycosyl transferase. Despite possessing weak antibacterial activity, NAI-112 is effective in experimental models of nociceptive pain, reducing pain symptoms in mice in both the formalin and the chronic constriction injury tests. Thus, NAI-112 represents, after the labyrinthopeptins, the second example of a lanthipeptide effective against nociceptive pain.