Glen A. Turley
University of Warwick
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Glen A. Turley.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2011
Glen A. Turley; S. M. Y. Ahmed; Mark A. Williams; Damian R. Griffin
Range of motion of the hip joint is a major contributor to dislocation post total hip replacement. Impingement is often treated as a surrogate for dislocation and occurs – prosthetically – when the neck of the femoral component contacts with the rim of the pelvic acetabular cup. This impingement is caused by movement of the leg during activities of daily living. This article analyses hip joint range of motion and its implication for impingement. A systematic literature review was undertaken with the purpose of establishing a range of motion benchmark for total hip replacement. This paper proposes a method by which a three-dimensional range of motion boundary established from the literature can be presented. The nominal boundary is also validated experimentally using a number of configurations of a neutral hip joint coordinate frame.
computer graphics, virtual reality, visualisation and interaction in africa | 2009
Jassim Happa; Mark A. Williams; Glen A. Turley; Graeme Earl; Piotr Dubla; Gareth Beale; Gregory John Gibbons; Kurt Debattista; Alan Chalmers
High-fidelity computer graphics offer the possibility for archaeologists to put excavated cultural heritage artefacts virtually back into their original setting and illumination conditions. This enables hypotheses about the perception of objects and their environments to be investigated in a safe and controlled manner. This paper presents a case study of the pipeline for the acquisition, modelling, rapid prototyping and virtual relighting of a Roman statue head preserved at Herculaneum in Italy. The statue head was excavated in 2006, after having been buried during the eruption of Mount Vesuvius in AD79.
Journal of Biomechanics | 2015
Arnab Palit; Sunil K. Bhudia; Theodoros N. Arvanitis; Glen A. Turley; Mark A. Williams
Majority of heart failure patients who suffer from diastolic dysfunction retain normal systolic pump action. The dysfunction remodels the myocardial fibre structure of left-ventricle (LV), changing its regular diastolic behaviour. Existing LV diastolic models ignored the effects of right-ventricular (RV) deformation, resulting in inaccurate strain analysis of LV wall during diastole. This paper, for the first time, proposes a numerical approach to investigate the effect of fibre-angle distribution and RV deformation on LV diastolic mechanics. A finite element modelling of LV passive inflation was carried out, using structure-based orthotropic constitutive law. Rule-based fibre architecture was assigned on a bi-ventricular (BV) geometry constructed from non-invasive imaging of human heart. The effect of RV deformation on LV diastolic mechanics was investigated by comparing the results predicted by BV and single LV model constructed from the same image data. Results indicated an important influence of RV deformation which led to additional LV passive inflation and increase of average fibre and sheet stress-strain in LV wall during diastole. Sensitivity of LV passive mechanics to the changes in the fibre distribution was also examined. The study revealed that LV diastolic volume increased when fibres were aligned more towards LV longitudinal axis. Changes in fibre angle distribution significantly altered fibre stress-strain distribution of LV wall. The simulation results strongly suggest that patient-specific fibre structure and RV deformation play very important roles in LV diastolic mechanics and should be accounted for in computational modelling for improved understanding of the LV mechanics under normal and pathological conditions.
Medical & Biological Engineering & Computing | 2013
Glen A. Turley; Mark A. Williams; Richard Wellings; Damian R. Griffin
In total hip arthroplasty, determining the impingement free range of motion requirement is a complex task. This is because in the native hip, motion is restricted by both impingement as well as soft tissue restraint. The aim of this study is to determine a range of motion benchmark which can identify motions which are at risk from impingement and those which are constrained due to soft tissue. Two experimental methodologies were used to determine motions which were limited by impingement and those motions which were limited by both impingement and soft tissue restraint. By comparing these two experimental results, motions which were limited by impingement were able to be separated from those motions which were limited by soft tissue restraint. The results show motions in extension as well as flexion combined with adduction are limited by soft tissue restraint. Motions in flexion, flexion combined with abduction and adduction are at risk from osseous impingement. Consequently, these motions represent where the maximum likely damage will occur in femoroacetabular impingement or at most risk of prosthetic impingement in total hip arthroplasty.
Computer Aided Surgery | 2012
Glen A. Turley; Shahbaz M.Y. Ahmed; Mark A. Williams; Damian R. Griffin
Total hip arthroplasty restores lost mobility to patients suffering from osteoarthritis and acute trauma. In recent years, navigated surgery has been used to control prosthetic component placement. Furthermore, there has been increasing research on what constitutes correct placement. This has resulted in the definition of a safe-zone for acetabular cup orientation. However, there is less definition with regard to femoral anteversion and how it should be measured. This study assesses the validity of the femoral anteversion measurement method used in imageless navigation, with particular attention to how the neutral rotation of the femur is defined. CT and gait analysis methodologies are used to validate the reference which defines this neutral rotation, i.e., the ankle epicondyle piriformis (AEP) plane. The findings of this study indicate that the posterior condylar axis is a reliable reference for defining the neutral rotation of the femur. In imageless navigation, when these landmarks are not accessible, the AEP plane provides a useful surrogate to the condylar axis, providing a reliable baseline for femoral anteversion measurement.
international conference of the ieee engineering in medicine and biology society | 2015
Arnab Palit; Sunil K. Bhudia; Theodoros N. Arvanitis; Victoria Sherwood; Sarah Wayte; Glen A. Turley; Mark A. Williams
Fibre orientation of myocardial wall plays a significant role in ventricular wall stress, which is assumed to be responsible for many cardiac mechanics, including ventricular remodelling, associated with heart failure. Previous studies, conducted to identify the effects of fibre orientation on left -ventricle (LV) diastolic mechanics, used only animals myocardium properties (no human data) and therefore, may not apply for predicting human cardiac mechanics. In the present study, computational modelling of LV diastole was carried out to investigate the effects of fibre orientation on LV end diastolic pressure volume relation (EDPVR) and wall stress distribution using subject-specific in vivo passive properties of human myocardium for two human hearts. Results indicated that LV inflation increased when fibres were aligned more towards LV longitudinal axis and the effect was more notable when the fibre angle was higher in endocardium than epicardium wall. Changes in fibre angle distribution considerably altered fibre stress distribution of LV wall and the changes were significant in anterior and lateral regions of equatorial and apical locations. Furthermore, the regions of high fibre stress from midwall to endocardium were gradually confined towards endocardium with the decrease in fibre angle. Such information will be useful for future studies/diagnoses of LV mechanics in normal and pathological conditions.
Archive | 2014
Arnab Palit; Glen A. Turley; Sunil K. Bhudia; R. M. Wellings; Mark A. Williams
Finite element based surgical simulation has the potential to be used as a surgical planning tool for the repairing of the ventricular aneurysm, a substantial cause for heart failure. However, in order to be effective, this simulation requires the geometrical accuracy of the ventricle. In addition, fibre orientation is indispensable to define heart muscle’s material anisotropy but creation of a smooth fibre map for biomechanical analysis is still a challenge. In this paper, an innovative procedure is introduced to create 3D geometry in order to minimise the error occurs in the volume assessment of ventricle due to the large slice thickness of cardiac magnetic resonance imaging. Also, the procedure is used to investigate the effect of increasing slice thickness of the image data on the accuracy of the created 3D geometry. Furthermore, a novel Laplace-Dirichlet-Region growing-Finite element based algorithm is developed to create a fibre map based on the histological data. This algorithm is proven to be capable of generating smooth fibre orientations quickly, efficiently and robustly on the created 3D geometry. The fibre map can be subsequently fed into finite element analysis in order to define the material anisotropy for simulating surgical treatments.
International Journal of Productivity and Quality Management | 2007
Glen A. Turley; Mark A. Williams; Charles Tennant
Research has shown that perception of quality in the automotive industry has moved from traditional quality and reliability attributes to more emotional and sensory elements, known as craftsmanship. Assessment of these quality categories is achieved via linguistic assessment and converted into a quantitative score for quality management purposes. This methodology is known as the Final Vehicle Product Audit (FVPA). The purpose of this paper is to understand the application of FVPA within the four-wheel passenger vehicle segment of the market. The research focuses on Original Equipment Manufacturers (OEMs) and the FVPAs role within New Product Introduction (NPI) and with the supply base. This work also investigates how FVPA results are utilised by the OEM, the structure of the audit and its link to craftsmanship. A questionnaire was constructed to determine these research objectives and was sent to eligible firms within the industry. A representative sample returned the questionnaire for analysis.
Journal of Biomechanics | 2017
Arnab Palit; Pasquale Franciosa; Sunil K. Bhudia; Theodoros N. Arvanitis; Glen A. Turley; Mark A. Williams
Left-ventricular (LV) remodelling, associated with diastolic heart failure, is driven by an increase in myocardial stress. Therefore, normalisation of LV wall stress is the cornerstone of many therapeutic treatments. However, information regarding such regional stress-strain for human LV is still limited. Thus, the objectives of our study were to determine local diastolic stress-strain field in healthy LVs, and consequently, to identify the regional variations amongst them due to geometric heterogeneity. Effects of LV base movement on diastolic model predictions, which were ignored in the literature, were further explored. Personalised finite-element modelling of five normal human bi-ventricles was carried out using subject-specific myocardium properties. Model prediction was validated individually through comparison with end-diastolic volume and a new shape-volume based measurement of LV cavity, extracted from magnetic resonance imaging. Results indicated that incorporation of LV base movement improved the model predictions (shape-volume relevancy of LV cavity), and therefore, it should be considered in future studies. The LV endocardium always experienced higher fibre stress compared to the epicardium for all five subjects. The LV wall near base experienced higher stress compared to equatorial and apical locations. The lateral LV wall underwent greater stress distribution (fibre and sheet stress) compared to other three regions. In addition, normal ranges of different stress-strain components in different regions of LV wall were reported for five healthy ventricles. This information could be used as targets for future computational studies to optimise diastolic heart failure treatments or design new therapeutic interventions/devices.
Medical & Biological Engineering & Computing | 2014
Glen A. Turley; Damian R. Griffin; Mark A. Williams
Abstract In total hip arthroplasty, aseptic loosening and dislocation are associated with not being able to achieve the correct prosthetic component orientation. Femoral neck modularity has been proposed as a solution to this problem by allowing the surgeon to alter either the neck-shaft or version angle of the prosthetic femoral component intra-operatively. A single replicate full factorial design was used to evaluate how effective a modular femoral neck cementless stem was in restoring a healthy prosthetic range of motion in comparison with a leading fixed-neck cementless stem with the standard modular parameters. It was found that, if altered to a large enough degree, femoral neck modularity can increase the amount of prosthetic motion as well as alter its position to where it is required physiologically. However, there is a functional limit to the amount that can be corrected and there is a risk with regard to the surgeon having to select the optimum modular neck before any benefit is realised.