Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glen L. Wheeler is active.

Publication


Featured researches published by Glen L. Wheeler.


Nature | 1998

The biosynthetic pathway of vitamin C in higher plants

Glen L. Wheeler; Mark A. Jones; Nicholas Smirnoff

Vitamin C (L-ascorbic acid) has important antioxidant and metabolic functions in both plants and animals, but humans, and a few other animal species, have lost the capacity to synthesize it. Plant-derived ascorbate is thus the major source of vitamin C in the human diet. Although the biosynthetic pathway of L-ascorbic acid in animals is well understood, the plant pathway has remained unknown—one of the few primary plant metabolic pathways forwhich this is the case. L-ascorbate is abundant in plants (found at concentrations of 1–5 mM in leaves and 25 mM in chloroplasts,) and may have roles in photosynthesis and transmembrane electron transport. We found that D-mannose and L-galactose are efficient precursors for ascorbate synthesis and are interconverted by GDP-D-mannose-3,5-epimerase. We have identified an enzyme in pea and Arabidopsis thaliana, L-galactose dehydrogenase, that catalyses oxidation of L-galactose to L-galactono-1,4-lactone. We propose anascorbate biosynthesis pathway involving GDP-D-mannose, GDP-L-galactose, L-galactose and L-galactono-1,4-lactone, and have synthesized ascorbate from GDP-D-mannose by way of these intermediates in vitro. The definition of this biosynthetic pathway should allow engineering of plants for increased ascorbate production, thus increasing their nutritional value and stress tolerance.


Critical Reviews in Biochemistry and Molecular Biology | 2000

Ascorbic acid in plants: biosynthesis and function.

Nicholas Smirnoff; Glen L. Wheeler

ABSTRACT Ascorbic acid (vitamin C) is an abundant component of plants. It reaches a concentration of over 20 mM in chloroplasts and occurs in all cell compartments, including the cell wall. It has proposed functions in photosynthesis as an enzyme cofactor (including synthesis of ethylene, gibberellins and anthocyanins) and in control of cell growth. A biosynthetic pathway via GDP-mannose, GDP-L-galactose, L-galactose, and L-galactono-1,4-lactone has been proposed only recently and is supported by molecular genetic evidence from the ascorbate-deficient vtcl mutant of Arabidopsis thaliana. Other pathways via uronic acids could provide minor sources of ascorbate. Ascorbate, at least in some species, is a precursor of tartrate and oxalate. It has a major role in photosynthesis, acting in the Mehler peroxidase reaction with ascorbate peroxidase to regulate the redox state of photosynthetic electron carriers and as a cofactor for violaxanthin de-epoxidase, an enzyme involved in xanthophyll cycle-mediated photoprotection. The hypersensitivity of some of the vtc mutants to ozone and UV-B radiation, the rapid response of ascorbate peroxidase expression to (photo)-oxidative stress, and the properties of transgenic plants with altered ascorbate peroxidase activity all support an important antioxidative role for ascorbate. In relation to cell growth, ascorbate is a cofactor for prolyl hydroxylase that posttranslationally hydroxylates proline residues in cell wall hydroxyproline-rich glycoproteins required for cell division and expansion. Additionally, high ascorbate oxidase activity in the cell wall is correlated with areas of rapid cell expansion. It remains to be determined if this is a causal relationship and, if so, what is the mechanism. Identification of the biosynthetic pathway now opens the way to manipulating ascorbate biosynthesis in plants, and, along with the vtc mutants, this should contribute to a deeper understanding of the proposed functions of this multifacetted molecule.


PLOS Biology | 2014

The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing.

Patrick J. Keeling; Fabien Burki; Heather M. Wilcox; Bassem Allam; Eric E. Allen; Linda A. Amaral-Zettler; E. Virginia Armbrust; John M. Archibald; Arvind K. Bharti; Callum J. Bell; Bank Beszteri; Kay D. Bidle; Lisa Campbell; David A. Caron; Rose Ann Cattolico; Jackie L. Collier; Kathryn J. Coyne; Simon K. Davy; Phillipe Deschamps; Sonya T. Dyhrman; Bente Edvardsen; Ruth D. Gates; Christopher J. Gobler; Spencer J. Greenwood; Stephanie M. Guida; Jennifer L. Jacobi; Kjetill S. Jakobsen; Erick R. James; Bethany D. Jenkins; Uwe John

Current sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the worlds oceans.


Nature | 2013

Pan genome of the phytoplankton Emiliania underpins its global distribution

Betsy A. Read; Jessica Kegel; Mary J. Klute; Alan Kuo; Stephane C. Lefebvre; Florian Maumus; Christoph Mayer; John P. Miller; Adam Monier; Asaf Salamov; Jeremy R. Young; Maria Aguilar; Jean-Michel Claverie; Stephan Frickenhaus; Karina Gonzalez; Emily K. Herman; Yao-Cheng Lin; Johnathan A. Napier; Hiroyuki Ogata; Analissa F Sarno; Jeremy Shmutz; Declan C. Schroeder; Frederic Verret; Peter von Dassow; Klaus Valentin; Yves Van de Peer; Glen L. Wheeler; Emiliana Huxleyi; Joel B. Dacks; Charles F. Delwiche

Coccolithophores have influenced the global climate for over 200 million years. These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems. They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space. Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean. Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.


Critical Reviews in Plant Sciences | 2000

Ascorbic Acid in Plants: Biosynthesis and Function

Nicholas Smirnoff; Glen L. Wheeler

Ascorbic acid (vitamin C) is an abundant component of plants. It reaches a concentration of over 20 mM in chloroplasts and occurs in all cell compartments, including the cell wall. It has proposed functions in photosynthesis as an enzyme cofactor (including synthesis of ethylene, gibberellins and anthocyanins) and in control of cell growth. A biosynthetic pathway via GDP-mannose, GDP-L-galactose, L-galactose, and L-galactono-1,4-lactone has been proposed only recently and is supported by molecular genetic evidence from the ascorbate-deficient vtc 1 mutant of Arabidopsis thaliana. Other pathways via uronic acids could provide minor sources of ascorbate. Ascorbate, at least in some species, is a precursor of tartrate and oxalate. It has a major role in photosynthesis, acting in the Mehler peroxidase reaction with ascorbate peroxidase to regulate the redox state of photosynthetic electron carriers and as a cofactor for violaxanthin de-epoxidase, an enzyme involved in xanthophyll cycle-mediated photoprotection. The hypersensitivity of some of the vtc mutants to ozone and UV-B radiation, the rapid response of ascorbate peroxidase expression to (photo)-oxidative stress, and the properties of transgenic plants with altered ascorbate peroxidase activity all support an important antioxidative role for ascorbate. In relation to cell growth, ascorbate is a cofactor for prolyl hydroxylase that posttranslationally hydroxylates proline residues in cell wall hydroxyproline-rich glycoproteins required for cell division and expansion. Additionally, high ascorbate oxidase activity in the cell wall is correlated with areas of rapid cell expansion. It remains to be determined if this is a causal relationship and, if so, what is the mechanism. Identification of the biosynthetic pathway now opens the way to manipulating ascorbate biosynthesis in plants, and, along with the vtc mutants, this should contribute to a deeper understanding of the proposed functions of this multifaceted molecule.


Trends in Plant Science | 2008

Ca2+ signalling in plants and green algae – changing channels

Glen L. Wheeler; Colin Brownlee

Eukaryotic cells generate cytosolic Ca2+ signals via Ca2+-conducting channels in cellular membranes. Plants and animals exhibit substantial differences in their complement of Ca2+ channels. In particular, the four-domain voltage-dependent Ca2+ channels, transient receptor potential channels and inositol (1,4,5)-trisphosphate receptors, which have important roles in animal physiology, are all absent from land plants. Recent evidence from biochemical and genomic studies has indicated that representatives of these classes of Ca2+ channels are present in members of the green plant lineage, the chlorophyte algae. This indicates that the Ca2+-signalling mechanisms absent from land plants were, in fact, present in ancestral eukaryotes and were lost by land plants after their divergence from the chlorophyte algae.


Journal of Biological Chemistry | 2006

Arabidopsis thaliana VTC4 Encodes L-Galactose-1-P Phosphatase, a Plant Ascorbic Acid Biosynthetic Enzyme

Patricia L. Conklin; Stephan Gatzek; Glen L. Wheeler; John Dowdle; Marjorie J. Raymond; Susanne Rolinski; Mikhail Isupov; Jennifer A. Littlechild; Nicholas Smirnoff

In plants, a proposed ascorbate (vitamin C) biosynthesis pathway occurs via GDP-d-mannose (GDP-d-Man), GDP-l-galactose (GDP-l-Gal), and l-galactose. However, the steps involved in the synthesis of l-Gal from GDP-l-Gal in planta are not fully characterized. Here we present evidence for an in vivo role for l-Gal-1-P phosphatase in plant ascorbate biosynthesis. We have characterized a low ascorbate mutant (vtc4-1) of Arabidopsis thaliana, which exhibits decreased ascorbate biosynthesis. Genetic mapping and sequencing of the VTC4 locus identified a mutation (P92L) in a gene with predicted l-Gal-1-P phosphatase activity (At3g02870). Pro-92 is within aβ-bulge that is conserved in related myo-inositol monophosphatases. The mutation is predicted to disrupt the positioning of catalytic amino acid residues within the active site. Accordingly, l-Gal-1-P phosphatase activity in vtc4-1 was ∼50% of wild-type plants. In addition, vtc4-1 plants incorporate significantly more radiolabel from [2-3H]Man into l-galactosyl residues suggesting that the mutation increases the availability of GDP-l-Gal for polysaccharide synthesis. Finally, a homozygous T-DNA insertion line, which lacks a functional At3g02870 gene product, is also ascorbate-deficient (50% of wild type) and deficient in l-Gal-1-P phosphatase activity. Genetic complementation tests revealed that the insertion mutant and VTC4-1 are alleles of the same genetic locus. The significantly lower ascorbate and perturbed l-Gal metabolism in vtc4-1 and the T-DNA insertion mutant indicate that l-Gal-1-P phosphatase plays a role in plant ascorbate biosynthesis. The presence of ascorbate in the T-DNA insertion mutant suggests there is a bypass to this enzyme or that other pathways also contribute to ascorbate biosynthesis.


Journal of Biological Chemistry | 2002

The Yeast Glutaredoxins Are Active as Glutathione Peroxidases

Emma J. Collinson; Glen L. Wheeler; Ester Ocón Garrido; Angela M. Avery; Simon V. Avery; Chris M. Grant

The yeast Saccharomyces cerevisiaecontains two glutaredoxins, encoded by GRX1 andGRX2, which are active as glutathione-dependent oxidoreductases. Our studies show that changes in the levels of glutaredoxins affect the resistance of yeast cells to oxidative stress induced by hydroperoxides. Elevating the gene dosage ofGRX1 or GRX2 increases resistance to hydroperoxides including hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide. The glutaredoxin-mediated resistance to hydroperoxides is dependent on the presence of an intact glutathione system, but does not require the activity of phospholipid hydroperoxide glutathione peroxidases (GPX1–3). Rather, the mechanism appears to be mediated via glutathione conjugation and removal from the cell because it is absent in strains lacking glutathione-S-transferases (GTT1,GTT2) or the GS-X pump (YCF1). We show that the yeast glutaredoxins can directly reduce hydroperoxides in a catalytic manner, using reducing power provided by NADPH, GSH, and glutathione reductase. With cumene hydroperoxide, high pressure liquid chromatography analysis confirmed the formation of the corresponding cumyl alcohol. We propose a model in which the glutathione peroxidase activity of glutaredoxins converts hydroperoxides to their corresponding alcohols; these can then be conjugated to GSH by glutathione-S-transferases and transported into the vacuole by Ycf1.


PLOS Biology | 2011

A Voltage-Gated H+ Channel Underlying pH Homeostasis in Calcifying Coccolithophores

Alison R. Taylor; Abdul Chrachri; Glen L. Wheeler; Helen Goddard; Colin Brownlee

Marine coccolithophorid phytoplankton are major producers of biogenic calcite, playing a significant role in the global carbon cycle. Predicting the impacts of ocean acidification on coccolithophore calcification has received much recent attention and requires improved knowledge of cellular calcification mechanisms. Uniquely amongst calcifying organisms, coccolithophores produce calcified scales (coccoliths) in an intracellular compartment and secrete them to the cell surface, requiring large transcellular ionic fluxes to support calcification. In particular, intracellular calcite precipitation using HCO3 − as the substrate generates equimolar quantities of H+ that must be rapidly removed to prevent cytoplasmic acidification. We have used electrophysiological approaches to identify a plasma membrane voltage-gated H+ conductance in Coccolithus pelagicus ssp braarudii with remarkably similar biophysical and functional properties to those found in metazoans. We show that both C. pelagicus and Emiliania huxleyi possess homologues of metazoan Hv1 H+ channels, which function as voltage-gated H+ channels when expressed in heterologous systems. Homologues of the coccolithophore H+ channels were also identified in a diversity of eukaryotes, suggesting a wide range of cellular roles for the Hv1 class of proteins. Using single cell imaging, we demonstrate that the coccolithophore H+ conductance mediates rapid H+ efflux and plays an important role in pH homeostasis in calcifying cells. The results demonstrate a novel cellular role for voltage gated H+ channels and provide mechanistic insight into biomineralisation by establishing a direct link between pH homeostasis and calcification. As the coccolithophore H+ conductance is dependent on the trans-membrane H+ electrochemical gradient, this mechanism will be directly impacted by, and may underlie adaptation to, ocean acidification. The presence of this H+ efflux pathway suggests that there is no obligate use of H+ derived from calcification for intracellular CO2 generation. Furthermore, the presence of Hv1 class ion channels in a wide range of extant eukaryote groups indicates they evolved in an early common ancestor.


Molecular Biology and Evolution | 2011

Insights into the Evolution of Vitamin B12 Auxotrophy from Sequenced Algal Genomes

Katherine E. Helliwell; Glen L. Wheeler; Kyriacos C. Leptos; Raymond E. Goldstein; Alison G. Smith

Vitamin B(12) (cobalamin) is a dietary requirement for humans because it is an essential cofactor for two enzymes, methylmalonyl-CoA mutase and methionine synthase (METH). Land plants and fungi neither synthesize or require cobalamin because they do not contain methylmalonyl-CoA mutase, and have an alternative B(12)-independent methionine synthase (METE). Within the algal kingdom, approximately half of all microalgal species need the vitamin as a growth supplement, but there is no phylogenetic relationship between these species, suggesting that the auxotrophy arose multiple times through evolution. We set out to determine the underlying cellular mechanisms for this observation by investigating elements of B(12) metabolism in the sequenced genomes of 15 different algal species, with representatives of the red, green, and brown algae, diatoms, and coccolithophores, including both macro- and microalgae, and from marine and freshwater environments. From this analysis, together with growth assays, we found a strong correlation between the absence of a functional METE gene and B(12) auxotrophy. The presence of a METE unitary pseudogene in the B(12)-dependent green algae Volvox carteri and Gonium pectorale, relatives of the B(12)-independent Chlamydomonas reinhardtii, suggest that B(12) dependence evolved recently in these lineages. In both C. reinhardtii and the diatom Phaeodactylum tricornutum, growth in the presence of cobalamin leads to repression of METE transcription, providing a mechanism for gene loss. Thus varying environmental conditions are likely to have been the reason for the multiple independent origins of B(12) auxotrophy in these organisms. Because the ultimate source of cobalamin is from prokaryotes, the selective loss of METE in different algal lineages will have had important physiological and ecological consequences for these organisms in terms of their dependence on bacteria.

Collaboration


Dive into the Glen L. Wheeler's collaboration.

Top Co-Authors

Avatar

Colin Brownlee

Marine Biological Association of the United Kingdom

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison R. Taylor

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Declan C. Schroeder

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris M. Grant

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Ian Joint

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge