Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glenn A. Waychunas is active.

Publication


Featured researches published by Glenn A. Waychunas.


Geochimica et Cosmochimica Acta | 1993

Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate

Glenn A. Waychunas; Brigid A. Rea; Christopher C. Fuller; James A. Davis

Abstract EXAFS spectra were collected on both the As and Fe K-edges from samples of two-line ferrihydrite with adsorbed (ADS) and coprecipitated (CPT) arsenate prepared over a range of conditions and arsenate surface coverages. Spectra also were collected for arsenate adsorbed on the surfaces of three FeOOH crystalline polymorphs, α (goethite), β (akaganeite), and γ (lepidocrocite), and as a free ion in aqueous: solution. Analyses of the As EXAFS show clear evidence for inner sphere bidentate (bridging) arsenate complexes on the ferrihydrite surface and on the surfaces of the crystalline FeOOH polymorphs. The bridging arsenate is attached to adjacent apices of edge-sharing Fe oxyhydroxyl octahedra. The arsenic-iron distance at the interface ( 3.28 ±0.01 A ) is close to that expected for this geometry on the FeOOH polymorph surfaces, but is slightly shorter on the ferrihydrite surfaces ( 3.25 ± 0.02 A ). Mono-dentate arsenate linkages ( 3.60 ± 0.03 A ) also occur on the ferrihydrite, but are not generally observed on the crystalline FeOOH polymorphs. The proportion of monodentate bonds appears largest for adsorption samples with the smallest As Fe molar ratio. In all cases the arsenate tetrahedral complex is relatively undistorted with As-O bonds of 1.66 ± 0.01 A . Precipitation of arsenate or scorodite-like phases was not observed for any samples, all of which were prepared at a pH value of 8. The Fe EXAFS results confirm that the Fe-Fe correlations in the ferrihydrite are progressively disrupted in the CPT samples as the As Fe ratio is increased. Coherent crystallite size is probably no more than 10 A in diameter and no Fe oxyhydroxyl octahedra corner-sharing linkages (as would be present in FeOOH polymorphs) are observed at the largest As Fe ratios. Comparison of the number and type of Fe-Fe neighbors with the topological constraints imposed by the arsenate saturation limit in the CPT samples (about 0.7 As Fe ) indicates ferrihydrite units consisting mainly of Fe oxyhydroxyl octahedra arranged in short dioctahedral chains with minimal interchain linking by octahedra corners. This is consistent with an enlarged surface area and a larger proportion of sites for bidentate arsenate bonding in CPT samples as compared to the ADS samples, which saturate with arsenate at lower As Fe ratios. The latter samples have larger crystallite sizes and a definite proportion of ferric octahedra sharing corners. The ratio of corner-sharing to edge-sharing Fe oxyhydroxyl octahedra in the ADS samples, and CPT samples with small As loadings, is very similar to what would be present in very small particles of goethite or akaganeite. The difference in the polymeric structure of ADS and CPT samples at higher As Fe ratios is due to strong arsenate bidentate adsorption that poisons the surface of particles of ferrihydrite precipitated in the presence of substantial arsenate, limiting their normal crystallization, and preventing further Fe-O-Fe polymerization. If the arsenate is applied after precipitation much less adsorption occurs since polymerization has already progressed. In both ADS and CPT samples, Fe-O-Fe polymerization increases with age, though at different rates for each type of sample.


Geochimica et Cosmochimica Acta | 1994

Uranium(VI) adsorption to ferrihydrite: Application of a surface complexation model

T.D. Waite; James A. Davis; Timothy E. Payne; Glenn A. Waychunas; Ning Xu

Abstract A study of U(VI) adsorption by ferrihydrite was conducted over a wide range of U(VI) concentrations, pH, and at two partial pressures of carbon dioxide. A two-site (strong- and weak-affinity sites, FesOH and FewOH, respectively) surface complexation model was able to describe the experimental data well over a wide range of conditions, with only one species formed with each site type: an inner-sphere, mononuclear, bidentate complex of the type (FeO2)UO2. The existence of such a surface species was supported by results of uranium EXAFS spectroscopy performed on two samples with U(VI) adsorption density in the upper range observed in this study (10 and 18% occupancy of total surface sites). Adsorption data in the alkaline pH range suggested the existence of a second surface species, modeled as a ternary surface complex with UO2CO30 binding to a bidentate surface site. Previous surface complexation models for U(VI) adsorption have proposed surface species that are identical to the predominant aqueous species, e.g., multinuclear hydrolysis complexes or several U(VI)-carbonate complexes. The results demonstrate that the speciation of adsorbed U(VI) may be constrained by the coordination environment at the surface, giving rise to surface speciation for U(VI) that is significantly less complex than aqueous speciation.


Geochimica et Cosmochimica Acta | 1993

Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation

Christopher C. Fuller; James A. Davis; Glenn A. Waychunas

Abstract The kinetics of As(V) adsorption by ferrihydrite was investigated in coprecipitation and postsynthesis adsorption experiments conducted in the pH range 7.5–9.0. In coprecipitation experiments, As(V) was present in solution during the hydrolysis and precipitation of iron. In adsorption experiments, a period of rapid ( Waychunas et al., 1993) showed that neither ferric arsenate nor any other As-bearing surface precipitate or solid solution was formed. The high adsorption densities are possible because the ferrihydrite particles are extremely small, approaching the size of small dioctahedral chains at the highest As(V) adsorption density. The results suggest that the solid solution model proposed by Fox (1989, 1992) for control of arsenate and phosphate concentrations in natural waters may be invalid.


Applied Geochemistry | 2000

Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California

Kaye S. Savage; Tracy N. Tingle; Peggy A. O'Day; Glenn A. Waychunas; Dennis K. Bird

Arsenian pyrite, formed during Cretaceous gold mineralization, is the primary source of As along the Melones fault zone in the southern Mother Lode Gold District of California. Mine tailings and associated weathering products from partially submerged inactive gold mines at Don Pedro Reservoir, on the Tuolumne River, contain approx. 20-1300 ppm As. The highest concentrations are in weathering crusts from the Clio mine and nearby outcrops which contain goethite or jarosite. As is concentrated up to 2150 ppm in the fine-grained (<63 mu-m) fraction of these Fe-rich weathering products. Individual pyrite grains in albite-chlorite schists of the Clio mine tailings contain an average of 1.2 wt. percent As. Pyrite grains are coarsely zoned, with local As concentrations ranging from approx. 0 to 5 wt. percent. Electron microprobe, transmission electron microscope, and extended X-ray absorption fine-structure spectroscopy (EXAFS) analyses indicate that As substitutes for S in pyrite and is not present as inclusions of arsenopyrite or other As-bearing phases. Comparison with simulated EXAFS spectra demonstrates that As atoms are locally clustered in the pyrite lattice and that the unit cell of arsenian pyrite is expanded by approx. 2.6 percent relative to pure pyrite. During weathering, clustered substitution of As into pyrite may be responsible for accelerating oxidation, hydrolysis, and dissolution of arsenian pyrite relative to pure pyrite in weathered tailings. Arsenic K-edge EXAFS analysis of the fine-grained Fe-rich weathering products are consistent with corner-sharing between As(V) tetrahedra and Fe(III)-octahedra. Determinations of nearest-neighbor distances and atomic identities, generated from least-squares fitting algorithms to spectral data, indicate that arsenate tetrahedra are sorbed on goethite mineral surfaces but substitute for SO4 in jarosite. Erosional transport of As-bearing goethite and jarosite to Don Pedro Reservoir increases the potential for As mobility and bioavailability by desorption or dissolution. Both the substrate minerals and dissolved As species are expected to respond to seasonal changes in lake chemistry caused by thermal stratification and turnover within the monomictic Don Pedro Reservoir. Arsenic is predicted to be most bioavailable and toxic in the reservoirs summer hypolimnion.


Physics and Chemistry of Minerals | 1983

X-ray K-edge absorption spectra of Fe minerals and model compounds: Near-edge structure

Glenn A. Waychunas; Michael J. Apted; E Gordon BrownJr.

Synchrotron radiation has been used to collect high-resolution Fe K absorption near-edge spectra of a suite of Fe minerals and compounds having a range of Fe environments. These spectra, along with those of previous workers, indicate that the number, position, and intensity of near-edge features are characteristic of Fe valence and general site geometry. For example, the crest of the K-edge for Fe2+ in a six-coordinated site in the oxides studied is about 3 eV lower in energy than that for Fe3+ in a similar site. The K-edge crest for Fe3+ in a four-coordinated site is 1 to 2 eV lower than for Fe3+ in a regular site. The shape of the edge crest is sensitive to the details of first-neighbor bonding distances, tending to be broader in species with irregular Fe sites and varying in energy according to the average bond length. Comparison with Ca2+ and Zn2+ spectra from the literature is made and the applicability and utility of edge measurements discussed.


Geochimica et Cosmochimica Acta | 1998

Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces

Satish C. B. Myneni; Samuel J. Traina; Glenn A. Waychunas; Terry J. Logan

Arsenate (AsO43−) is a common species in oxidizing aquatic systems and hydrothermal fluids, and its solubility and partitioning into different mineral phases are determined by the nature of AsO43− coordination, solution pH, type of soluble cations, and H2O structure at the mineral-fluid interfaces. While the vibrational spectroscopy has been widely used in examining the AsO43− coordination chemistry, insufficient knowledge on the correlation of AsO43− molecular structure and its vibrational spectra impeded the complete spectral interpretation. In this paper, we evaluated the vibrational spectroscopy of AsO43− in solutions, crystals, and sorbed on mineral surfaces using theoretical (semiempirical, for aqueous species) and experimental studies, with emphasis on the protonation, hydration, and metal complexation influence on the As-O symmetric stretching vibrations. Theoretical predictions are in excellent agreement with the experimental studies and helped in the evaluation of vibrational modes of several arsenate-complexes and in the interpretation of experimental spectra. These vibrational spectroscopic studies (IR, Raman) suggest that the symmetry of AsO43− polyhedron is strongly distorted, and its As-O vibrations are affected by protonation and the relative influence on AsO43− structure decreases in the order: H+ ≫ cation ≥ H2O. For all AsO43− complexes, the As-OX symmetric stretching (X = metal, H+, H2O; ≤820 cm−1) shifted to lower wavenumbers when compared to that of uncomplexed AsO43−. In addition, the As-OH symmetric stretching of protonated arsenates in aqueous solutions shift to higher energies with increasing protonation (<720, <770, <790 cm−1 for HAsO42−, H2AsO4−, and H3AsO40, respectively). The protonated arsenates in crystalline solids show the same trend with little variation in As-OH symmetric stretching vibrations. Since metal complexation of protonated AsO43− does not influence the As-OH vibrations significantly, deducing symmetry information from their vibrational spectra is difficult. However, for metal unprotonated-AsO43− complexes, the shifts in As-OM (M = metal) vibrations are influenced only by the nature of complexing cation and the type of coordination, and hence the AsO43− coordination environment can be interpreted directly from the splitting of As-O degenerate vibrations and relative shifts in the As-OM modes. This information is critical in evaluating the structure of AsO43− sorption complexes at the solid-water interfaces. The vibrational spectra of other tetrahedral oxoanions are expected to be along similar lines.


Science | 2013

Microscopic Evidence for Liquid-Liquid Separation in Supersaturated CaCO3 Solutions

Adam F. Wallace; Lester O. Hedges; Alejandro Fernandez-Martinez; Paolo Raiteri; Julian D. Gale; Glenn A. Waychunas; Stephen Whitelam; Jillian F. Banfield; J. J. De Yoreo

Making Crystals The initial transition from a disordered solution to the formation of nuclei that grow into crystals continues to be a puzzle. Recent experiments suggested the formation of stable ordered clusters that appear prior to the formation of the first nuclei. Wallace et al. (p. 885; see the Perspective by Myerson and Trout) used molecular dynamics to look at the potential structure and dynamics of these clusters and lattice gas simulations to explore the population dynamics of the cluster populations prior to nucleation. A liquid-liquid phase separation process was observed whereby one phase becomes more concentrated in ions and becomes the precursor for nuclei to form. The preordering seen during calcium carbonate crystallization may be due to a liquid-liquid separation process. [Also see Perspective by Myerson and Trout] Recent experimental observations of the onset of calcium carbonate (CaCO3) mineralization suggest the emergence of a population of clusters that are stable rather than unstable as predicted by classical nucleation theory. This study uses molecular dynamics simulations to probe the structure, dynamics, and energetics of hydrated CaCO3 clusters and lattice gas simulations to explore the behavior of cluster populations before nucleation. Our results predict formation of a dense liquid phase through liquid-liquid separation within the concentration range in which clusters are observed. Coalescence and solidification of nanoscale droplets results in formation of a solid phase, the structure of which is consistent with amorphous CaCO3. The presence of a liquid-liquid binodal enables a diverse set of experimental observations to be reconciled within the context of established phase-separation mechanisms.


Geochimica et Cosmochimica Acta | 1995

Geometry of sorbed arsenate on ferrihydrite and crystalline FeOOH: Re-evaluation of EXAFS results and topological factors in predicting sorbate geometry, and evidence for monodentate complexes

Glenn A. Waychunas; James A. Davis; Christopher C. Fuller

Manceaus (1995) reinterpretation of some of our EXAFS results (Waychunas et al., 1993) has been analyzed using both old and newly collected data in an attempt to clarify the nature of proposed monodentate and edge-sharing bidentate arsenate complexes on the ferrihydrite surface. It is shown that EXAFS analysis utilizing data with sufficient k-range does indicate the presence of relatively short AsFe bonds, suggestive of an edge-sharing complex as indicated by Manceau (1995). However, a variety of data analysis factors and crystal chemical considerations create doubt in this assignment. Most significantly, X-ray scattering data collected on a sample of ferrihydrite with a large density of sorbed arsenate, which should show a substantial fraction of the edge-sharing complex, does not show any such correlation within fitting uncertainty. We also suggest that it is unnecessary to invoke the presence of edge-sharing bidentate arsenate to explain the surface growth poisoning of ferrihydrite with increasing sorbed arsenate, as Manceau (1995) claims. Further, we show that a model based on the topology of close packed oxygen ions offers a clear explanation why monodentate arsenate should appear on some surfaces and not on others, and why differing AsFe distances might be observed on a single surface with a single type of complex. This model also explains why bidentate sorbed arsenate can occupy positions with consistent “tilt” angles. Without such consistency, the sorbed arsenate would be highly positionally disordered, and difficult to detect accurately via EXAFS methods.


Geochimica et Cosmochimica Acta | 1996

Wide angle X-ray scattering (WAXS) study of “two-line” ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results

Glenn A. Waychunas; Christopher C. Fuller; Brigid A. Rea; James A. Davis

Wide angle X-ray scattering (WAXS) measurements have been made on a suite of “two-line” ferrihydrite (FHY2) samples containing varying amounts of coprecipitated arsenate. Samples prepared at pH 8 with counter ions chloride, nitrate, and a mixture of both also were examined. The raw WAXS scattering functions show that “two-line” ferrihydrite actually has a large number of non-Bragg (i.e., diffuse scattering) maxima up to our observation limit of 16 A−1. The type of counter ion used during synthesis produces no significant change in this function. In unarsenated samples, Radial Distribution Functions (RDFs) produced from the scattering functions show a well-defined Fe-O peak at 2.02 A in excellent agreement with the mean distance of 2.01 A from extended X-ray absorption fine structure (EXAFS) analysis. The area under the Fe-O peak is consistent with only octahedral oxygen coordination about iron, and an iron coordination about oxygen of 2.2, in agreement with the EXAFS results, the sample composition, and XANES measurements. The second peak observed in the RDFs is clearly divided into two populations of correlations, at 3.07 and 3.52 A, respectively. These distances are close to the EXAFS-derived Fe-Fe subshell distances of 3.02–3.05 and 3.43–3.46 A, respectively, though this is misleading as the RDF peaks also include contributions from O-Fe and O-O correlations. Simulated RDFs of the FeOOH polymorphs indicate how the observed RDF structure relates to the EXAFS pair-correlation function, and allow comparisons with an ordered ferrihydrite structure. The effect of increasing arsenate content is dramatic, as the RDF peaks are progressively smeared out, indicating a wider range of interatomic distances even at moderate surface coverages, and a loss of longer range correlations. At an As/Fe ratio of 0.68, the surface saturation level of arsenate, the RDF shows little order beyond what would be expected from small pieces of dioctahedral Fe oxyhydroxyl chains or small “sheet” units. Analysis of the first RDF peak yields components due to As-O and Fe-O correlations. As the As-O component at 1.67 A increases in size, the Fe-O component decreases, reflecting a decrease in Fe coordination about the average oxygen. This reduction is consistent with a decrease in mean crystallite size as suggested by EXAFS studies. Analysis of the second RDF peak components shows the progressive decrease in Fe-Fe correlations, and the enhancement of As-Fe correlations, as arsenate level increases. Comparison of the experimental RDF from coprecipitated arsenate-saturated FHY2 with simulated RDFs of model iron oxyhydroxyl structures further constrains possible sizes and geometry for the precipitates, and is consistent with sorbed complexes of the bidentate binuclear (apical oxygen sharing) type.


Geochimica et Cosmochimica Acta | 1998

VIBRATIONAL SPECTROSCOPY OF FUNCTIONAL GROUP CHEMISTRY AND ARSENATE COORDINATION IN ETTRINGITE

Satish C. B. Myneni; Samuel J. Traina; Glenn A. Waychunas; Terry J. Logan

The functional group chemistry and coordination of AsO43−-sorption complexes in ettringite [Ca6Al2(SO4)3(OH)12·26H2O] were evaluated as a function of sorption type (adsorption, coprecipitation) and pH using Raman and Fourier Transform infrared (FTIR) spectroscopies. The reactive functional groups of ettringite, ≡Al-OH, ≡Ca-OH2, and ≡Ca2-OH exhibit broad overlapping OH bands in the range 3600–3200 cm−1, prohibiting separation of component vibrational bands. The SO42− polyhedra of the channels are present in three crystallographically different sites and exhibit weakly split S-O asymmetric stretch at 1136 cm−1 (with several components) and symmetric stretch at 1016, 1008, and 989 cm−1. During AsO43− adsorption, the vibrational spectra of SO42− were least affected, and the OH stretching intensities around 3600 cm−1 decreased with an increase in AsO43− sorption. In contrast, the S-O symmetric stretch at 1016 and 1008 cm−1 were almost completely removed, and the OH vibrations were relatively unaffected during AsO43−-coprecipitation. The As-O asymmetric stretch of sorbed AsO43− are split and occur as overlapping peaks around 870 cm−1. The As-Ocomplexed stretching vibrations are at ∼800 cm−1. The low pH samples (pH = 10.3–11.0) exhibit distinct As-OH stretching vibrations at 748 cm−1, indicating that some of the sorbed AsO43− ions are protonated. These spectral features demonstrate that AsO43− directly interacts with ettringite surface sites during adsorption and substitute inside the channels during coprecipitation (preferentially for two of the three sites). The energy position of the As-O symmetric stretch vibrations suggest that the AsO43− polyhedra interacts predominantly with ≡Ca-OH2 and ≡Ca2-OH sites rather than with ≡Al-OH sites. Sorption of more than one type of As species was evident in low pH (<11.0) samples.

Collaboration


Dive into the Glenn A. Waychunas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas P. Trainor

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Christopher C. Fuller

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James A. Davis

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Young-Shin Jun

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Alejandro Fernandez-Martinez

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge