Glenn C. Rowe
University of Alabama at Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Glenn C. Rowe.
Cancer Cell | 2013
Rizwan Haq; Jonathan Shoag; Pedro Andreu-Perez; Satoru Yokoyama; Hannah Edelman; Glenn C. Rowe; Dennie T. Frederick; Aeron D. Hurley; Abhinav Nellore; Andrew L. Kung; Jennifer A. Wargo; Jun S. Song; David E. Fisher; Zolt Arany; Hans R. Widlund
Activating mutations in BRAF are the most common genetic alterations in melanoma. Inhibition of BRAF by small molecules leads to cell-cycle arrest and apoptosis. We show here that BRAF inhibition also induces an oxidative phosphorylation gene program, mitochondrial biogenesis, and the increased expression of the mitochondrial master regulator, PGC1α. We further show that a target of BRAF, the melanocyte lineage factor MITF, directly regulates the expression of PGC1α. Melanomas with activation of the BRAF/MAPK pathway have suppressed levels of MITF and PGC1α and decreased oxidative metabolism. Conversely, treatment of BRAF-mutated melanomas with BRAF inhibitors renders them addicted to oxidative phosphorylation. Our data thus identify an adaptive metabolic program that limits the efficacy of BRAF inhibitors.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Jessica Chinsomboon; Jorge L. Ruas; Rana K. Gupta; Robyn Thom; Jonathan Shoag; Glenn C. Rowe; Naoki Sawada; Srilatha Raghuram; Zoltan Arany
Peripheral arterial disease (PAD) affects 5 million people in the US and is the primary cause of limb amputations. Exercise remains the single best intervention for PAD, in part thought to be mediated by increases in capillary density. How exercise triggers angiogenesis is not known. PPARγ coactivator (PGC)-1α is a potent transcriptional co-activator that regulates oxidative metabolism in a variety of tissues. We show here that PGC-1α mediates exercise-induced angiogenesis. Voluntary exercise induced robust angiogenesis in mouse skeletal muscle. Mice lacking PGC-1α in skeletal muscle failed to increase capillary density in response to exercise. Exercise strongly induced expression of PGC-1α from an alternate promoter. The induction of PGC-1α depended on β-adrenergic signaling. β-adrenergic stimulation also induced a broad program of angiogenic factors, including vascular endothelial growth factor (VEGF). This induction required PGC-1α. The orphan nuclear receptor ERRα mediated the induction of VEGF by PGC-1α, and mice lacking ERRα also failed to increase vascular density after exercise. These data demonstrate that β-adrenergic stimulation of a PGC-1α/ERRα/VEGF axis mediates exercise-induced angiogenesis in skeletal muscle.
Nature | 2012
Ian S. Patten; Sarosh Rana; Sajid Shahul; Glenn C. Rowe; Cholsoon Jang; Laura Liu; Michele R. Hacker; Julie S. Rhee; John D. Mitchell; Feroze Mahmood; Philip E. Hess; Caitlin Farrell; Nicole Koulisis; Eliyahu V. Khankin; Suzanne D. Burke; I. Tudorache; Johann Bauersachs; Federica del Monte; Denise Hilfiker-Kleiner; S. Ananth Karumanchi; Zoltan Arany
Peripartum cardiomyopathy (PPCM) is an often fatal disease that affects pregnant women who are near delivery, and it occurs more frequently in women with pre-eclampsia and/or multiple gestation. The aetiology of PPCM, and why it is associated with pre-eclampsia, remain unknown. Here we show that PPCM is associated with a systemic angiogenic imbalance, accentuated by pre-eclampsia. Mice that lack cardiac PGC-1α, a powerful regulator of angiogenesis, develop profound PPCM. Importantly, the PPCM is entirely rescued by pro-angiogenic therapies. In humans, the placenta in late gestation secretes VEGF inhibitors like soluble FLT1 (sFLT1), and this is accentuated by multiple gestation and pre-eclampsia. This anti-angiogenic environment is accompanied by subclinical cardiac dysfunction, the extent of which correlates with circulating levels of sFLT1. Exogenous sFLT1 alone caused diastolic dysfunction in wild-type mice, and profound systolic dysfunction in mice lacking cardiac PGC-1α. Finally, plasma samples from women with PPCM contained abnormally high levels of sFLT1. These data indicate that PPCM is mainly a vascular disease, caused by excess anti-angiogenic signalling in the peripartum period. The data also explain how late pregnancy poses a threat to cardiac homeostasis, and why pre-eclampsia and multiple gestation are important risk factors for the development of PPCM.
Science Translational Medicine | 2010
Gregory D. Lewis; Laurie A. Farrell; Malissa J. Wood; Maryann Martinovic; Zoltan Arany; Glenn C. Rowe; Amanda Souza; Susan Cheng; Elizabeth L. McCabe; Elaine Yang; Xu Shi; Rahul C. Deo; Frederick P. Roth; Aarti Asnani; Eugene P. Rhee; David M. Systrom; Marc J. Semigran; Steven A. Carr; Thomas J. Wang; Marc S. Sabatine; Clary B. Clish; Robert E. Gerszten
Measurement by mass spectrometry of 200 blood metabolites reveals that individuals who are more fit respond more effectively to exercise, as shown by larger exercise-induced increase in glycerol. What Happens When You Run the Boston Marathon? We used to call it toil; now, we call it exercise. The human body has evolved to perform physical labor, and modern sedentary lifestyles are at odds with this evolutionary mandate. This disconnect makes it all the more imperative that we understand the physiology of how the body converts fuel to work. Lewis and colleagues have moved us toward that goal by comprehensively surveying blood metabolites in people of varying fitness levels before and during exercise. Through the use of a high-sensitivity mass spectrometry method, they have characterized these exercise-induced metabolic changes in unprecedented detail. The authors measured 200 blood metabolites in groups of people before, during, and after exercise on a treadmill. They found that the elevated glycolysis, lipolysis, and amino acid catabolism that occur in skeletal muscle cells during use are reflected in a rise in marker metabolites of these processes in blood. Also appearing in the blood after exercise were niacinamide, which enhances insulin release and improves glycemic control, and allantoin, an indicator of oxidative stress. Even when other variables were controlled for, the people who were more fit—as measured by their maximum oxygen use—exhibited more lipolysis during exercise (98% increase) than did the less fit (48% increase) participants or those who developed heart ischemia upon exertion (18% increase). Even more striking was the increase in lipolysis (1128%) in runners after they finished the Boston Marathon, a 26.2-mile run through the winding roads of Boston and its environs. From these data, the authors could not tell whether the more well-conditioned individuals were fitter because their metabolism used fat more effectively or whether, once attaining fitness, these able-bodied metabolic systems were better at burning fat. A mechanistic clue is provided by a final experiment in which the authors show that a combination of six of the metabolites elevated by exercise reflects an increase in glucose utilization and lipid metabolism in skeletal muscle cells, whereas none of the individual elevated molecules signal this effect. Thus, a cost of our sedentary lives may be to deoptimize the operation of the complicated system that is human metabolism. Sorting out how this backsliding occurs and how to restore the vigor of our metabolism will be facilitated by the findings and tools reported here. Exercise provides numerous salutary effects, but our understanding of how these occur is limited. To gain a clearer picture of exercise-induced metabolic responses, we have developed comprehensive plasma metabolite signatures by using mass spectrometry to measure >200 metabolites before and after exercise. We identified plasma indicators of glycogenolysis (glucose-6-phosphate), tricarboxylic acid cycle span 2 expansion (succinate, malate, and fumarate), and lipolysis (glycerol), as well as modulators of insulin sensitivity (niacinamide) and fatty acid oxidation (pantothenic acid). Metabolites that were highly correlated with fitness parameters were found in subjects undergoing acute exercise testing and marathon running and in 302 subjects from a longitudinal cohort study. Exercise-induced increases in glycerol were strongly related to fitness levels in normal individuals and were attenuated in subjects with myocardial ischemia. A combination of metabolites that increased in plasma in response to exercise (glycerol, niacinamide, glucose-6-phosphate, pantothenate, and succinate) up-regulated the expression of nur77, a transcriptional regulator of glucose utilization and lipid metabolism genes in skeletal muscle in vitro. Plasma metabolic profiles obtained during exercise provide signatures of exercise performance and cardiovascular disease susceptibility, in addition to highlighting molecular pathways that may modulate the salutary effects of exercise.
Circulation Research | 2010
Glenn C. Rowe; Aihua Jiang; Zolt Arany
The beating heart requires a constant flux of ATP to maintain contractile function, and there is increasing evidence that energetic defects contribute to the development of heart failure. The last 10 years have seen a resurgent interest in cardiac intermediary metabolism and a dramatic increase in our understanding of transcriptional networks that regulate cardiac energetics. The PPAR-&ggr; coactivator (PGC)-1 family of proteins plays a central role in these pathways. The mechanisms by which PGC-1 proteins regulate transcriptional networks and are regulated by physiological cues, as well as the roles they play in cardiac development and disease, are reviewed here.
Journal of Clinical Investigation | 2011
Mei Tran; Denise Tam; Amit Bardia; Manoj Bhasin; Glenn C. Rowe; Ajay Kher; Zsuzsanna Zsengellér; M. Reza Akhavan-Sharif; Eliyahu V. Khankin; Magali Saint-Geniez; Sascha David; Deborah Burstein; S. Ananth Karumanchi; Isaac E. Stillman; Zoltan Arany; Samir M. Parikh
Sepsis-associated acute kidney injury (AKI) is a common and morbid condition that is distinguishable from typical ischemic renal injury by its paucity of tubular cell death. The mechanisms underlying renal dysfunction in individuals with sepsis-associated AKI are therefore less clear. Here we have shown that endotoxemia reduces oxygen delivery to the kidney, without changing tissue oxygen levels, suggesting reduced oxygen consumption by the kidney cells. Tubular mitochondria were swollen, and their function was impaired. Expression profiling showed that oxidative phosphorylation genes were selectively suppressed during sepsis-associated AKI and reactivated when global function was normalized. PPARγ coactivator-1α (PGC-1α), a major regulator of mitochondrial biogenesis and metabolism, not only followed this pattern but was proportionally suppressed with the degree of renal impairment. Furthermore, tubular cells had reduced PGC-1α expression and oxygen consumption in response to TNF-α; however, excess PGC-1α reversed the latter effect. Both global and tubule-specific PGC-1α-knockout mice had normal basal renal function but suffered persistent injury following endotoxemia. Our results demonstrate what we believe to be a novel mechanism for sepsis-associated AKI and suggest that PGC-1α induction may be necessary for recovery from this disorder, identifying a potential new target for future therapeutic studies.
Nature Medicine | 2016
Cholsoon Jang; Sungwhan F. Oh; Shogo Wada; Glenn C. Rowe; Laura Liu; Mun Chun Chan; James Rhee; Atsushi Hoshino; Boa Kim; Ayon Ibrahim; Luisa G Baca; Esl Kim; Chandra C. Ghosh; Samir M. Parikh; Aihua Jiang; Qingwei Chu; Daniel E. Forman; Stewart H. Lecker; Saikumari Y. Krishnaiah; Joshua D. Rabinowitz; Aalim M. Weljie; Joseph A. Baur; Dennis L. Kasper; Zoltan Arany
Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.
Nature | 2011
Chris McDermott-Roe; Junmei Ye; Rizwan Ahmed; Ximing Sun; Anna Serafín; James S. Ware; Leonardo Bottolo; Phil Muckett; Xavier Cañas; Jisheng Zhang; Glenn C. Rowe; Rachel Buchan; Han Lu; Adam Braithwaite; Massimiliano Mancini; David Hauton; Ramon Martí; Elena García-Arumí; Norbert Hubner; Howard J. Jacob; Tadao Serikawa; Vaclav Zidek; František Papoušek; Frantisek Kolar; Maria Cardona; Marisol Ruiz-Meana; David Garcia-Dorado; Joan X. Comella; Leanne E. Felkin; Paul J.R. Barton
Left ventricular mass (LVM) is a highly heritable trait and an independent risk factor for all-cause mortality. So far, genome-wide association studies have not identified the genetic factors that underlie LVM variation, and the regulatory mechanisms for blood-pressure-independent cardiac hypertrophy remain poorly understood. Unbiased systems genetics approaches in the rat now provide a powerful complementary tool to genome-wide association studies, and we applied integrative genomics to dissect a highly replicated, blood-pressure-independent LVM locus on rat chromosome 3p. Here we identified endonuclease G (Endog), which previously was implicated in apoptosis but not hypertrophy, as the gene at the locus, and we found a loss-of-function mutation in Endog that is associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly implicated ENDOG in fundamental mitochondrial processes that are unrelated to apoptosis. We showed direct regulation of ENDOG by ERR-α and PGC1α (which are master regulators of mitochondrial and cardiac function), interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, the Endog-deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated levels of reactive oxygen species, which were associated with enlarged and steatotic cardiomyocytes. Our study has further established the link between mitochondrial dysfunction, reactive oxygen species and heart disease and has uncovered a role for Endog in maladaptive cardiac hypertrophy.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Lydia W.S. Finley; Jaewon Lee; Amanda Souza; Valérie Desquiret-Dumas; Kevin Bullock; Glenn C. Rowe; Vincent Procaccio; Clary B. Clish; Zoltan Arany; Marcia C. Haigis
Calorie restriction (CR) is a dietary intervention that extends lifespan and healthspan in a variety of organisms. CR improves mitochondrial energy production, fuel oxidation, and reactive oxygen species (ROS) scavenging in skeletal muscle and other tissues, and these processes are thought to be critical to the benefits of CR. PGC-1α is a transcriptional coactivator that regulates mitochondrial function and is induced by CR. Consequently, many of the mitochondrial and metabolic benefits of CR are attributed to increased PGC-1α activity. To test this model, we examined the metabolic and mitochondrial response to CR in mice lacking skeletal muscle PGC-1α (MKO). Surprisingly, MKO mice demonstrated a normal improvement in glucose homeostasis in response to CR, indicating that skeletal muscle PGC-1α is dispensable for the whole-body benefits of CR. In contrast, gene expression profiling and electron microscopy (EM) demonstrated that PGC-1α is required for the full CR-induced increases in mitochondrial gene expression and mitochondrial density in skeletal muscle. These results demonstrate that PGC-1α is a major regulator of the mitochondrial response to CR in skeletal muscle, but surprisingly show that neither PGC-1α nor mitochondrial biogenesis in skeletal muscle are required for the whole-body metabolic benefits of CR.
PLOS ONE | 2012
Glenn C. Rowe; Riyad El-Khoury; Ian S. Patten; Pierre Rustin; Zoltan Arany
Exercise confers numerous health benefits, many of which are thought to stem from exercise-induced mitochondrial biogenesis (EIMB) in skeletal muscle. The transcriptional coactivator PGC-1α, a potent regulator of metabolism in numerous tissues, is widely believed to be required for EIMB. We show here that this is not the case. Mice engineered to lack PGC-1α specifically in skeletal muscle (Myo-PGC-1αKO mice) retained intact EIMB. The exercise capacity of these mice was comparable to littermate controls. Induction of metabolic genes after 2 weeks of in-cage voluntary wheel running was intact. Electron microscopy revealed no gross abnormalities in mitochondria, and the mitochondrial biogenic response to endurance exercise was as robust in Myo-PGC-1αKO mice as in wildtype mice. The induction of enzymatic activity of the electron transport chain by exercise was likewise unperturbed in Myo-PGC-1αKO mice. These data demonstrate that PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle, in sharp contrast to the prevalent assumption in the field.