Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glenn Dunshea is active.

Publication


Featured researches published by Glenn Dunshea.


PLOS ONE | 2009

DNA-based diet analysis for any predator.

Glenn Dunshea

Background Prey DNA from diet samples can be used as a dietary marker; yet current methods for prey detection require a priori diet knowledge and/or are designed ad hoc, limiting their scope. I present a general approach to detect diverse prey in the feces or gut contents of predators. Methodology/Principal Findings In the example outlined, I take advantage of the restriction site for the endonuclease Pac I which is present in 16S mtDNA of most Odontoceti mammals, but absent from most other relevant non-mammalian chordates and invertebrates. Thus in DNA extracted from feces of these mammalian predators Pac I will cleave and exclude predator DNA from a small region targeted by novel universal primers, while most prey DNA remain intact allowing prey selective PCR. The method was optimized using scat samples from captive bottlenose dolphins (Tursiops truncatus) fed a diet of 6–10 prey species from three phlya. Up to five prey from two phyla were detected in a single scat and all but one minor prey item (2% of the overall diet) were detected across all samples. The same method was applied to scat samples from free-ranging bottlenose dolphins; up to seven prey taxa were detected in a single scat and 13 prey taxa from eight teleost families were identified in total. Conclusions/Significance Data and further examples are provided to facilitate rapid transfer of this approach to any predator. This methodology should prove useful to zoologists using DNA-based diet techniques in a wide variety of study systems.


Molecular Ecology Resources | 2011

Telomeres as age markers in vertebrate molecular ecology

Glenn Dunshea; Deborah A. Duffield; Nick Gales; Mark A. Hindell; Randall S. Wells; Simon N. Jarman

Chronological age is a fundamental and yet elusive variable in studies of many wild animals. Telomeres are nucleoprotein structures on the ends of chromosomes that change size throughout the life of many animals and because of this property have been advocated as a means to estimate age. In this review, we assess the existing and potential application of using telomeres for age estimation. We argue that there are conceptual and statistical inconsistencies in previous studies and that the basis for telomere change over time is not well understood and affected by several intrinsic and extrinsic process unrelated to chronological time. Furthermore, these processes are likely to vary spatially and temporally for animal populations. We conclude that the current data suggest telomeres should not be used for age estimation. If telomere‐based age estimation is to be used, more work in understanding variability in key processes affecting telomere dynamics and rigorous substantiation via blind testing is needed.


Biology Letters | 2013

Stranded dolphin stomach contents represent the free-ranging population's diet

Glenn Dunshea; Nélio B. Barros; Elizabeth J. Berens McCabe; Nicholas J. Gales; Mark A. Hindell; Simon N. Jarman; Randall S. Wells

Diet is a fundamental aspect of animal ecology. Cetacean prey species are generally identified by examining stomach contents of stranded individuals. Critical uncertainty in these studies is whether samples from stranded animals are representative of the diet of free-ranging animals. Over two summers, we collected faecal and gastric samples from healthy free-ranging individuals of an extensively studied bottlenose dolphin population. These samples were analysed by molecular prey detection and these data compared with stomach contents data derived from stranded dolphins from the same population collected over 22 years. There was a remarkable consistency in the prey species composition and relative amounts between the two datasets. The conclusions of past stomach contents studies regarding dolphin habitat associations, prey selection and proposed foraging mechanisms are supported by molecular data from live animals and the combined dataset. This is the first explicit test of the validity of stomach contents analysis for accurate population-scale diet determination of an inshore cetacean.


Bulletin of Entomological Research | 2008

Pseudogenes and DNA-based diet analyses: a cautionary tale from a relatively well sampled predator-prey system

Glenn Dunshea; Nélio B. Barros; Randall S. Wells; Nicholas J. Gales; Mark A. Hindell; Simon N. Jarman

Mitochondrial ribosomal DNA is commonly used in DNA-based dietary analyses. In such studies, these sequences are generally assumed to be the only version present in DNA of the organism of interest. However, nuclear pseudogenes that display variable similarity to the mitochondrial versions are common in many taxa. The presence of nuclear pseudogenes that co-amplify with their mitochondrial paralogues can lead to several possible confounding interpretations when applied to estimating animal diet. Here, we investigate the occurrence of nuclear pseudogenes in fecal samples taken from bottlenose dolphins (Tursiops truncatus) that were assayed for prey DNA with a universal primer technique. We found pseudogenes in 13 of 15 samples and 1-5 pseudogene haplotypes per sample representing 5-100% of all amplicons produced. The proportion of amplicons that were pseudogenes and the diversity of prey DNA recovered per sample were highly variable and appear to be related to PCR cycling characteristics. This is a well-sampled system where we can reliably identify the putative pseudogenes and separate them from their mitochondrial paralogues using a number of recommended means. In many other cases, it would be virtually impossible to determine whether a putative prey sequence is actually a pseudogene derived from either the predator or prey DNA. The implications of this for DNA-based dietary studies, in general, are discussed.


PLOS ONE | 2015

Coral settlement on a highly disturbed equatorial reef system.

Andrew Geoffrey Bauman; James R. Guest; Glenn Dunshea; Jeffery Low; Peter A. Todd; Peter D. Steinberg

Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world’s most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m-2 yr-1) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March–May and September–November, coinciding with annual coral spawning periods (March–April and October), while the lowest settlement occurred from December–February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae <1%. Other, unidentifiable families represented 10% of the coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure (‘others’; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of Singapore’s reefs appears relatively constrained, which could lead to less resilient reefs.


Journal of Mammalogy | 2010

Harp seal ageing techniques—teeth, aspartic acid racemization, and telomere sequence analysis

Eva Garde; Anne Kirstine Frie; Glenn Dunshea; Steen H. Hansen; Kit M. Kovacs; Christian Lydersen

Abstract Lower jaws (containing the teeth), eyes, and skin samples were collected from harp seals (Pagophilus groenlandicus) in the southeastern Barents Sea for the purpose of comparing age estimates obtained by 3 different methods, the traditional technique of counting growth layer groups (GLGs) in teeth and 2 novel approaches, aspartic acid racemization (AAR) in eye lens nuclei and telomere sequence analyses as a proxy for telomere length. A significant correlation between age estimates obtained using GLGs and AAR was found, whereas no correlation was found between GLGs and telomere length. An AAR rate (kAsp) of 0.00130/year ± 0.00005 SE and a D-enantiomer to L-enantiomer ratio at birth (D/L0 value) of 0.01933 ± 0.00048 SE were estimated by regression of D/L ratios against GLG ages from 25 animals (12 selected teeth that had high readability and 13 known-aged animals). AAR could prove to be useful, particularly for ageing older animals in species such as harp seals where difficulties in counting GLGs tend to increase with age. Age estimation by telomere length did not show any correlation with GLG ages and is not recommended for harp seals.


Scientific Reports | 2017

Macroalgal browsing on a heavily degraded, urbanized equatorial reef system

Andrew G. Bauman; Andrew S. Hoey; Glenn Dunshea; David A. Feary; Jeffrey Low; Peter A. Todd

The removal of macroalgal biomass is critical to the health of coral reef ecosystems. Previous studies on relatively intact reefs with diverse and abundant fish communities have quantified rapid removal of macroalgae by herbivorous fishes, yet how these findings relate to degraded reef systems where fish diversity and abundance are markedly lower and algal biomass substantially higher, is unclear. We surveyed roving herbivorous fish communities and quantified their capacity to remove the dominant macroalga Sargassum ilicifolium on seven reefs in Singapore; a heavily degraded urbanized reef system. The diversity and abundance of herbivorous fishes was extremely low, with eight species and a mean abundance ~1.1 individuals 60 m−2 recorded across reefs. Consumption of S. ilicifolium varied with distance from Singapore’s main port with consumption being 3- to 17-fold higher on reefs furthest from the port (Pulau Satumu: 4.18 g h−1; Kusu Island: 2.38 g h−1) than reefs closer to the port (0.35–0.78 g h−1). Video observations revealed a single species, Siganus virgatus, was almost solely responsible for removing S. ilicifolium biomass, accounting for 83% of the mass-standardized bites. Despite low herbivore diversity and intense urbanization, macroalgal removal by fishes on some Singaporean reefs was directly comparable to rates reported for other inshore Indo-Pacific reefs.


Marine Pollution Bulletin | 2016

Prickly business: abundance of sea urchins on breakwaters and coral reefs in Dubai.

Andrew G. Bauman; Glenn Dunshea; David A. Feary; Andrew S. Hoey

Echinometra mathaei is a common echinoid on tropical reefs and where abundant plays an important role in the control of algal communities. Despite high prevalence of E. mathaei on southern Persian/Arabian Gulf reefs, their abundance and distribution is poorly known. Spatial and temporal patterns in population abundance were examined at 12 sites between breakwater and natural reef habitats in Dubai (UAE) every 3 months from 2008 to 2010. Within the breakwater habitat, densities were greatest at shallow wave-exposed sites, and reduced with both decreasing wave-exposure and increasing depth. Interestingly, E. mathaei were significantly more abundant on exposed breakwaters than natural reef sites, presumably due to differences in habitat structure and benthic cover. Population abundances differed seasonally, with peak abundances during summer (July-September) and lower abundances in winter (December-February). Seasonal fluctuations are likely the result of peak annual recruitment pulses coupled with increased fish predation from summer to winter.


Frontiers in Marine Science | 2018

Species-Specific Coral Calcification Responses to the Extreme Environment of the Southern Persian Gulf

Emily J. Howells; Glenn Dunshea; Dain McParland; Grace O. Vaughan; Scott F. Heron; Morgan S. Pratchett; John A. Burt; Andrew G. Bauman

Sustained accretion of calcium carbonate (mostly by scleractinian corals) is fundamental for maintaining the structure and function of coral reef ecosystems, but may be greatly constrained by extreme and rapidly changing environmental conditions. Corals in the southern Persian Gulf already experience extreme temperature ranges (34C), chronic hypersalinity (>43 psu) and frequent light limitation (<100 μmol photons m-2 s-1). We compared annual rates of calcification for two of the most common massive coral species in the region (Platygyra daedalea and Cyphastrea microphthalma) along marked gradients in environmental conditions in the southern Persian Gulf and into the Oman Sea. Overall calcification rates were 32% higher in P. daedalea colonies (x = 1.103 g cm-2 y-1, n = 46) than in C. microphthalma (x = 0.835 g cm-2 y-1, n = 37), probably reflecting inter-specific differences in energy allocation and skeletal density. There was also considerable variation in calcification rates among individual colonies from the same locations that was unrelated to depth or photosymbiont type. However, most interestingly, P. daedalea and C. microphthalma exhibited contrasting trends in mean annual calcification rates across locations. For P. daedalea, calcification rates were lowest at Delma, where the minimum temperatures were lowest and salinity was highest, and increased across the southern Persian Gulf with increases in minimum temperatures and decreases in salinity. These data suggest that calcification rates of P. daedalea are most constrained by minimum temperatures, which is consistent with the strong relationship between annual calcification rates and minimum local temperatures recorded across the Indo-Pacific. Conversely, linear extension and calcification of C. microphthalma in the southern Persian Gulf was lowest at Ras Ghanada, where there was lowest light and highest maximum temperatures. These data reveal striking taxonomic differences in the specific environmental constraints on coral calcification, which will further reinforce changes in the structure of coral assemblages with ongoing global climate change.


Marine Ecology | 2010

Conflicting estimates of connectivity among deep‐sea coral populations

Karen J. Miller; Alan Williams; Ashley A. Rowden; Claire L. Knowles; Glenn Dunshea

Collaboration


Dive into the Glenn Dunshea's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Lydersen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Andrew G. Bauman

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Randall S. Wells

Chicago Zoological Society

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas J. Gales

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Kit M. Kovacs

Norwegian Polar Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge