Glenn F. Rush
Smith, Kline & French
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Glenn F. Rush.
Toxicology and Applied Pharmacology | 1985
Glenn F. Rush; Joel R. Gorski; Mary G. Ripple; Janice Sowinski; Peter J. Bugelski; William R. Hewitt
Organic hydroperoxides such as tert-butyl hydroperoxide (TBHP) are cytotoxic to suspensions of isolated hepatocytes. The exact mechanism of toxicity is unknown but may involve peroxidation of cellular lipids, alkylation of cellular macromolecules, or alterations in cellular calcium homeostasis. These studies were designed to examine lipid peroxidation as a mechanism of organic hydroperoxide-induced cell death. Hepatocytes isolated from mice were more susceptible to the cytotoxic effects of TBHP than were rat hepatocytes. TBHP-induced cell death was preceded by malondialdehyde formation which was also greater in mouse than rat hepatocytes. Species differences in lipid peroxidation were due to intrinsic properties of hepatocyte membranes as lipids isolated from mouse liver and peroxidized with iron/ascorbate formed approximately eightfold more malondialdehyde than lipids isolated from rat liver. Initiation of lipid peroxidation in mouse and rat hepatocytes with iron/ascorbate caused the formation of malondialdehyde equal to that seen with TBHP and a slight depletion of cellular GSH. As with TBHP, malondialdehyde formation induced by iron/ascorbate was greater in mouse than in rat hepatocytes. However, iron/ascorbate had no effect on hepatocyte viability or morphology from either species. Furthermore, TBHP-induced malondialdehyde and ethane formation in isolated rat hepatocytes were completely blocked by promethazine whereas cell toxicity was altered only slightly. Therefore, these data do not support a role for lipid peroxidation in the acute cytotoxicity of TBHP to suspensions of isolated rat hepatocytes.
Toxicology and Applied Pharmacology | 1989
Glenn D. Hoke; Richard A. Macia; Paul C. Meunier; Peter J. Bugelski; Christopher K. Mirabelli; Glenn F. Rush; William D. Matthews
Bis[1,2-bis(diphenylphosphino)ethane] gold(I) chloride (Au(DPPE)+2), a cytotoxic antineoplastic drug candidate, was cardiotoxic in rabbits. Intravenous administration of Au(DPPE)+2 (15 mg/kg) as a single dose produced multiple, 2- to 5-mm subendocardial and myocardial lesions, macroscopically appearing as pale tan foci. Histologically, these lesions consisted of widely scattered zones of myocardial cell necrosis and mineralization. The myocardium also contained multifocal areas of contraction band necrosis in which aggregated clumps of disorganized myofilaments were contiguous with areas of sarcoplasm which were relatively devoid of myofilaments. In a series of in vitro studies, electron microscopic examination of isolated rabbit myocytes treated with 30 microM Au(DPPE)+2 for 15 min showed evidence of mitochondrial swelling and electron translucent mitochondrial matrices. After 60 min of incubation, myocytes had mitochondria that were condensed and disrupted but the cristae had retained their tubular profiles. Isolated rabbit myocytes exposed to 30 microM Au(DPPE)+2 had significant increases in the leakage of lactate dehydrogenase, an index of cell death. Cellular ATP content in myocytes exposed to 30 microM Au(DPPE)+2 was significantly reduced by 30 min. State 4 respiration in isolated rabbit mitochondria was significantly increased by Au(DPPE)+2 (30 microM) while state 3 respiration was unaffected. Au(DPPE)+2 also caused a rapid dissipation of the mitochondrial inner membrane electrochemical potential in a concentration-dependent manner and was accompanied by a ruthenium red-sensitive calcium efflux. These data suggest that disruption of mitochondrial function, leading to uncoupling of oxidative phosphorylation, decreased ATP synthesis, and altered mitochondrial calcium homeostasis, may be a contributing factor leading to cardiac myofibril necrosis produced by Au(DPPE)+2.
Toxicology and Applied Pharmacology | 1986
Glenn F. Rush; David W. Alberts
The metabolism of tert.-butyl hydroperoxide (TBHP) by the glutathione peroxidase/reductase system in isolated hepatocytes results in the rapid depletion of reduced glutathione and NADPH. The regeneration of NADPH can occur through the pentose phosphate pathway, but only when the pathway is stimulated, for example, by NADP+ and possibly oxidized glutathione, both of which can be elevated in hepatocytes exposed to TBHP. TBHP is a cytotoxicant and the role of NADPH and the pentose phosphate pathway in protecting hepatocytes from TBHP-induced injury is unknown. Isolated rat hepatocytes exposed to TBHP (0.5 mM) for 30 min metabolized more [1-14C]glucose to 14CO2 than control (638.2 +/- 96.2 vs 306.9 +/- 69.5 dpm/10(6) cells) whereas 14CO2 evolution from [6-14C]glucose was unchanged, indicating that TBHP increases the activity of the pentose phosphate pathway and not glycolysis. TBHP (0.25 mM) metabolism also resulted in a rapid oxidation of hepatocyte NADPH from 2.85 +/- 0.32 to 0.55 +/- 0.24 nmol/10(6) cells which rapidly returned to 3.58 +/- 0.27 nmol NADPH/10(6) cells. Inhibition of the pentose phosphate pathway with 6-aminonicotinamide (70 mg/kg; 5 hr prior to hepatocyte isolation) inhibited TBHP-stimulated 14CO2 evolution from [1-14C]glucose and decreased the rate of NADP+ reduction. Hepatocytes isolated from 6-aminonicotinamide-treated animals were more susceptible to TBHP-induced cell injury than were control hepatocytes. These data demonstrate the following: The metabolism of TBHP by isolated hepatocytes stimulated the activity of the pentose phosphate pathway; and inhibition of the pentose phosphate pathway with 6-aminonicotinamide potentiated the toxicity of TBHP to isolated rat hepatocytes. These results suggest that the regeneration of NADPH by the pentose phosphate pathway may play a significant role in protecting hepatocytes from TBHP-induced damage.
Toxicology and Applied Pharmacology | 1987
Peter F. Smith; David W. Alberts; Glenn F. Rush
Isolated hepatocytes were prepared from fed and fasted rats and exposed to a range of menadione (2-methyl-1,4-naphthoquinone) concentrations. Menadione (300 microM) caused a rapid decline in the (NADPH)/(NADPH + NADP+) ratio from 0.85 to 0.39 within 15 min, with further decreases over the 90-min incubation period in cells isolated from fed animals. This decrease of NADPH resulted from oxidation to NADP+ since there was no loss of total pyridine nucleotide (NADP+ + NADPH) content. In addition, menadione (100 microM) caused a five-fold stimulation of the hexose monophosphate shunt by 30 min as indicated by the oxidation of [1-14C]glucose. LDH leakage was slightly but significantly elevated (30% of total) following exposure of cells to 300 microM menadione for 2 hr. Menadione caused a concentration-dependent GSH depletion: 100 microM menadione caused no depletion and 200 and 300 microM menadione caused a 75 and 95% decrease, respectively. Intracellular NADPH was significantly reduced within 30 min by 100 and 200 microM menadione but then returned to values equivalent to or greater than control by 60 min. In contrast, a sustained decrease of NADPH was produced by 300 microM menadione (5% of control after 2 hr). A marked potentiation of the oxidative cell injury produced by menadione was observed in hepatocytes prepared from 24-hr-fasted rats. LDH leakage was 50 and 95% when these cells were exposed to 100 and 200 microM menadione, respectively. Menadione (100 and 200 microM) also caused a marked GSH depletion (95% of control) by 90 min. In contrast to cells isolated from fed animals, menadione (100 and 200 microM) caused an 85% depletion of NADPH by 60 min in cells isolated from fasted rats. This potentiation of menadione-induced oxidative injury was not related to the decreased GSH content produced by fasting since menadione toxicity was not potentiated in control cells partially depleted of GSH by diethyl maleate. A further comparison was made between cells isolated from fasted rats and incubated either with or without supplemental glucose in order to determine a possible protective effect by glucose. In this comparison a significant (p less than 0.05) glucose effect was indeed observed in the direction of preventing GSH and NADPH depletion, as well as attenuating LDH leakage, when hepatocytes were exposed to either 50 or 100 microM menadione.(ABSTRACT TRUNCATED AT 400 WORDS)
Life Sciences | 1988
Robin S. Goldstein; Peter F. Smith; Joan B. Tarloff; Lisa R. Contardi; Glenn F. Rush; Jerry B. Hook
Large doses of the cephalosporin antibiotic, cephaloridine, produce acute proximal tubular necrosis in humans and in laboratory animals. Cephaloridine is actively transported into the proximal tubular cell by an organic anion transport system while transport across the lumenal membrane into tubular fluid appears restricted. High intracellular concentrations of cephaloridine are attained in the proximal tubular cell which are critical to the development of nephrotoxicity. There is substantial evidence indicating that oxidative stress plays a major role in cephaloridine nephrotoxicity. Cephaloridine depletes reduced glutathione, increases oxidized glutathione and induces lipid peroxidation in renal cortical tissue. The molecular mechanisms mediating cephaloridine-induced oxidative stress are not well understood. Inhibition in gluconeogenesis is a relatively early biochemical effect of cephaloridine and is independent of lipid peroxidation. Furthermore, cephaloridine inhibits gluconeogenesis in both target (kidney) and non-target (liver) organs of cephaloridine toxicity. Since glucose is not a major fuel of proximal tubular cells, it is unlikely that cephaloridine-induced tubular necrosis is mediated by the effects of this drug on glucose synthesis.
Toxicology and Applied Pharmacology | 1986
Glenn F. Rush; Lee Ann Yodis; Dave Alberts
Metabolism of tert-butyl hydroperoxide (TBHP, 2.0 mM) by glutathione peroxidase within isolated rat hepatocytes caused a rapid oxidation of intracellular reduced glutathione and ultimately NADPH through glutathione reductase. TBHP also caused the formation of surface blebs in the hepatocyte plasma membrane followed by the leakage of cytosolic enzymes, such as lactate dehydrogenase, into the incubation medium. Catechol (0.1 mM) protected hepatocytes from the cytotoxic effects of TBHP but did not prevent the rapid oxidation of glutathione indicating normal metabolism of TBHP through glutathione reductase. In contrast, addition of catechol to the hepatocyte incubations prevented TBHP-induced depletion of intracellular NADPH and increased the total NADP+ + NADPH concentration without altering significantly the intracellular NADP+ content or the NADPH/NADP + NADPH ratio. Catechol did not alter TBHP stimulation of the pentose phosphate pathway. Hepatocytes incubated with sublethal concentrations of TBHP (1.0 mM) did not leak lactate dehydrogenase into the medium but did lose intracellular potassium. In these experiments, TBHP caused a sustained increase in phosphorylase alpha activity suggesting that TBHP metabolism may be associated with a sustained increase in cytosolic free Ca2+. In the presence of catechol, phosphorylase alpha activity was increased by 5 min but returned toward control by 20 min. These data suggest that catechol may be protecting hepatocytes from TBHP-induced injury by preventing a sustained rise in cytosolic free Ca2+ concentration.
Toxicology | 1986
Jacqueline H. Smith; Glenn F. Rush; Jerry B. Hook
A marked species difference exists in the induction of renal and hepatic mixed function oxidase (MFO) activity between rats and rabbits. However, little is known about MFO induction in these organs from other laboratory animals. Male Golden Syrian hamsters and male Hartley guinea pigs were administered phenobarbital (PB) or beta-napthoflavone (BNF) at 70 and 40 mg/kg, respectively, as daily i.p. injections for 4 days. Polybrominated biphenyl (PBB) (Firemaster BP-6) was given as a single i.p. injection (50 mg/kg). Hamster hepatic microsomal ethoxyresorufin-O-deethylase (EROD) and benzphetamine-N-demethylase (BPND) were selectively induced by BNF and PB, respectively. PBB administration induced both hamster hepatic EROD and BPND. In contrast, hepatic microsomal MFO activity from the guinea pig was inducible by PB, PBB and BNF. Renal microsomal MFO activity in both species was inducible by BNF and PBB as arylhydrocarbon hydroxylase and EROD were induced approximately 10-fold. On the other hand, hamster BPND was induced by PB whereas guinea pig MFO activity was unaffected. Total renal cytochrome P-450 content was not affected by any of these inducers in either species. These data demonstrate selective patterns of induction in both hamster and guinea pig liver and kidney suggesting the involvement of multiple forms of cytochrome P-450.
Toxicology and Applied Pharmacology | 1989
Glenn D. Hoke; Glenn F. Rush; Christopher K. Mirabelli
Chlorotriethylphosphine gold(I) (TEPAu) is an organo-gold compound that has therapeutic activity in animal models of rheumatoid arthritis. Initial studies have suggested that TEPAu is a potent cytotoxic compound in vitro against a variety of cultured cell types and isolated hepatocytes. Mitochondrial dysfunction induced by this compound has been suggested as a primary biochemical alteration which may result in lethal cell injury in isolated hepatocytes. The purpose of this study was, therefore, to determine the mechanism of TEPAu-induced dysfunction of isolated rat liver mitochondria. TEPAu induced a rapid, concentration-related collapse of the mitochondrial inner membrane potential (EC50 = 24.7 +/- 2.5 microM) which was potentiated in Ca2+ loaded mitochondria (EC50 = 11.3 +/- 3.8 microM). TEPAu-induced collapse of the membrane potential was partially inhibited in the presence of ruthenium red or EGTA. TEPAu caused the rapid release of mitochondrially sequestered Ca2+ which was not inhibited by ruthenium red and, thus, was not via a reversal of the Ca2+ uniporter. TEPAu caused mitochondrial swelling, increased permeability of the inner membrane, and the oxidation/hydrolysis of endogenous mitochondrial pyridine nucleotides. Addition of exogenous ATP slightly reversed the effects of TEPAu on pyridine nucleotides. TEPAu-induced mitochondrial alterations were reversed or inhibited by exposure to the sulfhydryl reducing agent, dithiothreitol. Also, the TEPAu-induced collapse of the mitochondrial membrane potential was partially inhibited by dibucaine, a non-specific inhibitor of phospholipases. These data suggest that TEPAu-induced mitochondrial dysfunction is sulfhydryl dependent. TEPAu-induced mitochondrial dysfunction results in dissipation of the potential difference across the inner mitochondrial membrane which inhibits mitochondrial oxidative phosphorylation. The mechanism by which TEPAu induces the collapse of the membrane potential may be mediated by a sulfhydryl-dependent increase in permeability of the inner membrane to protons.
Biochemical Pharmacology | 1987
Peter F. Smith; David W. Alberts; Glenn F. Rush
Metabolism of menadione (2-methyl-1,4-naphthoquinone) results in the rapid oxidation of NADPH within isolated rat hepatocytes. The glutathione redox cycle is thought to play a major role in the consumption of NADPH during menadione metabolism, chiefly through glutathione reductase (GSSG-reductase). This enzyme reduces oxidized glutathione (GSSG), formed via the glutathione-peroxidase reaction, with the concomitant oxidation of NADPH. To explore the relationship between GSSG-reductase and the consumption of NADPH during menadione metabolism, isolated rat hepatocyte suspensions were exposed to non-lethal and lethal menadione concentrations (100 and 300 microM respectively) following the inhibition of GSSG-reductase with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Menadione produced a concentration-related depletion of GSH (measured as non-protein sulfhydryl content) which was potentiated markedly by BCNU. Menadione toxicity was potentiated at either concentration by BCNU based on lactate dehydrogenase leakage at 2 hr. In addition, the NADPH content of isolated hepatocytes rapidly declined following exposure to either concentration of menadione. However, at the lower menadione concentration (100 microM), the NADPH content returned to control values or above by 60 min, whereas the NADPH content of cells exposed to 300 microM menadione with or without BCNU remained depressed for the duration of the incubation. These data suggest that, although NADPH is required by GSSG-reductase for the reduction of GSSG to GSH during quinone-induced oxidative stress, this pathway does not appear to be the major route by which NADPH is consumed during the metabolism of menadione in isolated hepatocytes.
Toxicology Letters | 1986
Stanley Lupo; William R. Hewitt; Glenn F. Rush
Isolated perfused livers from male and female Sprague-Dawley rats were exposed to cadmium chloride (50 and 200 microM). Acute hepatotoxicity was investigated by measuring cadmium-induced changes in bile flow, urea synthesis and alanine aminotransferase (ALT) leakage. Cadmium-induced lipid peroxidation was estimated by formation of conjugated dieners and thiobarbituric acid (TBA) reactants. Cadmium, at both concentrations, caused a rapid decrease in bile flow (within 40 min) and complete cholestasis within 70 min exposure in livers perfused from both male and female rats. Cadmium exposure (50 and 200 microM) also resulted in the leakage of ALT into the perfusate within 60 min. In contrast, exposure of isolated rat hepatocytes to as high as 500 microM cadmium did not result in enzyme leakage until 180 min exposure. Sex differences in cadmium-induced cholestasis and ALT leakage were not observed at these concentrations. Malondialdehyde was not detected in the perfusate nor were conjugated dienes detected in liver tissue following 90 min cadmium exposure. These data demonstrate that the isolated perfused rat liver (IPRL) is a sensitive system in which to study chemically induced hepatotoxicity. Cadmium rapidly causes functional alterations and cellular damage in perfused livers from both male and female rats. Cadmium-induced liver injury was apparently not related to lipid peroxidation.