Glenn Freshour
University of Georgia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Glenn Freshour.
Cell | 1996
Laura Di Laurenzio; Joanna Wysocka-Diller; Jocelyn E. Malamy; Leonard Pysh; Yrjö Helariutta; Glenn Freshour; Michael G. Hahn; Kenneth A. Feldmann; Philip N. Benfey
In the Arabidopsis root meristem, initial cells undergo asymmetric divisions to generate the cell lineages of the root. The scarecrow mutation results in roots that are missing one cell layer owing to the disruption of an asymmetric division that normally generates cortex and endodermis. Tissue-specific markers indicate that a heterogeneous cell type is formed in the mutant. The deduced amino acid sequence of SCARECROW (SCR) suggests that it is a member of a novel family of putative transcription factors. SCR is expressed in the cortex/endodermal initial cells and in the endodermal cell lineage. Tissue-specific expression is regulated at the transcriptional level. These results indicate a key role for SCR in regulating the radial organization of the root.
The Plant Cell | 2008
David Cavalier; Olivier Lerouxel; Lutz Neumetzler; Kazuchika Yamauchi; Antje Reinecke; Glenn Freshour; Olga A. Zabotina; Michael G. Hahn; Ingo Burgert; Markus Pauly; Natasha V. Raikhel; Kenneth Keegstra
Xyloglucans are the main hemicellulosic polysaccharides found in the primary cell walls of dicots and nongraminaceous monocots, where they are thought to interact with cellulose to form a three-dimensional network that functions as the principal load-bearing structure of the primary cell wall. To determine whether two Arabidopsis thaliana genes that encode xylosyltransferases, XXT1 and XXT2, are involved in xyloglucan biosynthesis in vivo and to determine how the plant cell wall is affected by the lack of expression of XXT1, XXT2, or both, we isolated and characterized xxt1 and xxt2 single and xxt1 xxt2 double T-DNA insertion mutants. Although the xxt1 and xxt2 mutants did not have a gross morphological phenotype, they did have a slight decrease in xyloglucan content and showed slightly altered distribution patterns for xyloglucan epitopes. More interestingly, the xxt1 xxt2 double mutant had aberrant root hairs and lacked detectable xyloglucan. The reduction of xyloglucan in the xxt2 mutant and the lack of detectable xyloglucan in the xxt1 xxt2 double mutant resulted in significant changes in the mechanical properties of these plants. We conclude that XXT1 and XXT2 encode xylosyltransferases that are required for xyloglucan biosynthesis. Moreover, the lack of detectable xyloglucan in the xxt1 xxt2 double mutant challenges conventional models of the plant primary cell wall.
Plant Physiology | 2010
Sivakumar Pattathil; Utku Avci; David Baldwin; Alton G. Swennes; Janelle A. McGill; Zoë A. Popper; Tracey Bootten; Anathea Albert; Ruth H. Davis; Chakravarthy Chennareddy; Ruihua Dong; Beth O'Shea; Ray Rossi; Christine Leoff; Glenn Freshour; Rajesh Narra; Malcolm O'Neil; William S. York; Michael G. Hahn
A collection of 130 new plant cell wall glycan-directed monoclonal antibodies (mAbs) was generated with the aim of facilitating in-depth analysis of cell wall glycans. An enzyme-linked immunosorbent assay-based screen against a diverse panel of 54 plant polysaccharides was used to characterize the binding patterns of these new mAbs, together with 50 other previously generated mAbs, against plant cell wall glycans. Hierarchical clustering analysis was used to group these mAbs based on the polysaccharide recognition patterns observed. The mAb groupings in the resulting cladogram were further verified by immunolocalization studies in Arabidopsis (Arabidopsis thaliana) stems. The mAbs could be resolved into 19 clades of antibodies that recognize distinct epitopes present on all major classes of plant cell wall glycans, including arabinogalactans (both protein- and polysaccharide-linked), pectins (homogalacturonan, rhamnogalacturonan I), xyloglucans, xylans, mannans, and glucans. In most cases, multiple subclades of antibodies were observed to bind to each glycan class, suggesting that the mAbs in these subgroups recognize distinct epitopes present on the cell wall glycans. The epitopes recognized by many of the mAbs in the toolkit, particularly those recognizing arabinose- and/or galactose-containing structures, are present on more than one glycan class, consistent with the known structural diversity and complexity of plant cell wall glycans. Thus, these cell wall glycan-directed mAbs should be viewed and utilized as epitope-specific, rather than polymer-specific, probes. The current world-wide toolkit of approximately 180 glycan-directed antibodies from various laboratories provides a large and diverse set of probes for studies of plant cell wall structure, function, dynamics, and biosynthesis.
The Plant Cell | 2007
Staffan Persson; Kerry Hosmer Caffall; Glenn Freshour; Matthew T. Hilley; Stefan Bauer; Patricia Poindexter; Michael G. Hahn; Debra Mohnen; Chris Somerville
The secondary cell wall in higher plants consists mainly of cellulose, lignin, and xylan and is the major component of biomass in many species. The Arabidopsis thaliana irregular xylem8 (irx8) mutant is dwarfed and has a significant reduction in secondary cell wall thickness. IRX8 belongs to a subgroup of glycosyltransferase family 8 called the GAUT1-related gene family, whose members include GAUT1, a homogalacturonan galacturonosyltransferase, and GAUT12 (IRX8). Here, we use comparative cell wall analyses to show that the irx8 mutant contains significantly reduced levels of xylan and homogalacturonan. Immunohistochemical analyses confirmed that the level of xylan was significantly reduced in the mutant. Structural fingerprinting of the cell wall polymers further revealed that irx8 is deficient in glucuronoxylan. To explore the biological function of IRX8, we crossed irx8 with irx1 (affecting cellulose synthase 8). The homozygous irx1 irx8 exhibited severely dwarfed phenotypes, suggesting that IRX8 is essential for cell wall integrity during cellulose deficiency. Taken together, the data presented show that IRX8 affects the level of glucuronoxylan and homogalacturonan in higher plants and that IRX8 provides an important link between the xylan polymer and the secondary cell wall matrix and directly affects secondary cell wall integrity.
Plant Physiology | 1996
Glenn Freshour; R. P. Clay; M. S. Fuller; Peter Albersheim; Alan G. Darvill; Michael G. Hahn
The plant cell wall is a dynamic structure that plays important roles in growth and development and in the interactions of plants with their environment and other organisms. We have used monoclonal antibodies that recognize different carbohydrate epitopes present in plant cell-wall polysaccharides to locate these epitopes in roots of developing Arabidopsis thaliana seedlings. An epitope in the pectic polysaccharide rhamnogalacturonan I is observed in the walls of epidermal and cortical cells in mature parts of the root. This epitope is inserted into the walls in a developmentally regulated manner. Initially, the epitope is observed in atrichoblasts and later appears in trichoblasts and simultaneously in cortical cells. A terminal [alpha]-fucosyl-containing epitope is present in almost all of the cell walls in the root. An arabinosylated (1->6)-[beta]-galactan epitope is also found in all of the cell walls of the root with the exception of lateral root-cap cell walls. It is striking that these three polysaccharide epitopes are not uniformly distributed (or accessible) within the walls of a given cell, nor are these epitopes distributed equally across the two walls laid down by adjacent cells. Our results further suggest that the biosynthesis and differentiation of primary cell walls in plants are precisely regulated in a temporal, spatial, and developmental manner.
Plant Physiology | 2003
Ruiqin Zhong; W. Herbert Morrison; Glenn Freshour; Michael G. Hahn; Zheng-Hua Ye
Cellulose synthase catalytic subunits (CesAs) have been implicated in catalyzing the biosynthesis of cellulose, the major component of plant cell walls. Interactions between CesA subunits are thought to be required for normal cellulose synthesis, which suggests that incorporation of defective CesA subunits into cellulose synthase complex could potentially cause a dominant effect on cellulose synthesis. However, all CesA mutants so far reported have been shown to be recessive in terms of cellulose synthesis. In the course of studying the molecular mechanisms regulating secondary wall formation in fibers, we have found that a mutant allele of AtCesA7 gene in the fra5 (fragile fiber 5) mutant causes a semidominant phenotype in the reduction of fiber cell wall thickness and cellulose content. The fra5 missense mutation occurred in a conserved amino acid located in the second cytoplasmic domain of AtCesA7. Overexpression of the fra5 mutant cDNA in wild-type plants not only reduced secondary wall thickness and cellulose content but also decreased primary wall thickness and cell elongation. In contrast, overexpression of the fra6 mutant form of AtCesA8 did not cause any reduction in cell wall thickness and cellulose content. These results suggest that the fra5 mutant protein may interfere with the function of endogenous wild-type CesA proteins, thus resulting in a dominant negative effect on cellulose biosynthesis.
Plant Journal | 2008
Olga A. Zabotina; Wilhelmina van de Ven; Glenn Freshour; Georgia Drakakaki; David Cavalier; Grégory Mouille; Michael G. Hahn; Kenneth Keegstra; Natasha V. Raikhel
The function of a putative xyloglucan xylosyltransferase from Arabidopsis thaliana (At1g74380; XXT5) was studied. The XXT5 gene is expressed in all plant tissues, with higher levels of expression in roots, stems and cauline leaves. A T-DNA insertion in the XXT5 gene generates a readily visible root hair phenotype (root hairs are shorter and form bubble-like extrusions at the tip), and also causes the alteration of the main root cellular morphology. Biochemical characterization of cell wall polysaccharides isolated from xxt5 mutant seedlings demonstrated decreased xyloglucan quantity and reduced glucan backbone substitution with xylosyl residues. Immunohistochemical analyses of xxt5 plants revealed a selective decrease in some xyloglucan epitopes, whereas the distribution patterns of epitopes characteristic for other cell wall polysaccharides remained undisturbed. Transformation of xxt5 plants with a 35S::HA-XXT5 construct resulted in complementation of the morphological, biochemical and immunological phenotypes, restoring xyloglucan content and composition to wild-type levels. These data provide evidence that XXT5 is a xyloglucan alpha-1,6-xylosyltransferase, and functions in the biosynthesis of xyloglucan.
Plant Physiology | 2003
Glenn Freshour; Christopher P. Bonin; Wolf-Dieter Reiter; Peter Albersheim; Alan G. Darvill; Michael G. Hahn
The monoclonal antibody, CCRC-M1, which recognizes a fucose (Fuc)-containing epitope found principally in the cell wall polysaccharide xyloglucan, was used to determine the distribution of this epitope throughout the mur1 mutant of Arabidopsis. Immunofluorescent labeling of whole seedlings revealed that mur1 root hairs are stained heavily by CCRC-M1, whereas the body of the root remains unstained or only lightly stained. Immunogold labeling showed that CCRC-M1 labeling within themur1 root is specific to particular cell walls and cell types. CCRC-M1 labels all cell walls at the apex of primary roots 2 d and older and the apices of mature lateral roots, but does not bind to cell walls in lateral root initials. Labeling with CCRC-M1 decreases in mur1 root cells that are undergoing rapid elongation growth such that, in the mature portions of primary and lateral roots, only the walls of pericycle cells and the outer walls of epidermal cells are labeled. Growth of the mutant on Fuc-containing media restores wild-type labeling, where all cell walls are labeled by the CCRC-M1 antibody. No labeling was observed in mur1hypocotyls, shoots, or leaves; stipules are labeled. CCRC-M1 does label pollen grains within anthers and pollen tube walls. These results suggest the Fuc destined for incorporation into xyloglucan is synthesized using one or the other or both isoforms of GDP-d-mannose 4,6-dehydratase, depending on the cell type and/or developmental state of the cell.
International Review of Cytology-a Survey of Cell Biology | 2002
Zheng-Hua Ye; Glenn Freshour; Michael G. Hahn; David H. Burk; Ruiqin Zhong
Vascular tissues, xylem and phloem, form a continuous network throughout the plant body for transport of water, minerals, and food. Characterization of Arabidopsis mutants defective in various aspects of vascular formation has demonstrated that Arabidopsis is an ideal system for investigating the molecular mechanisms controlling vascular development. The processes affected in these mutants include initiation or division of procambium or vascular cambium, formation of continuous vascular cell files, differentiation of procambium or vascular cambium into vascular tissues, cell elongation, patterned secondary wall thickening, and biosynthesis of secondary walls. Identification of the genes affected by some of these mutations has revealed essential roles in vascular development for a cytokinin receptor and several factors mediating auxin transport or signaling. Mutational studies have also identified a number of Arabidopsis mutants defective in leaf venation pattern or vascular tissue organization in stems. Genetic evidence suggests that the vascular tissue organization is regulated by the same positional information that determines organ polarity.
Journal of Biological Chemistry | 2007
Wim D'Haeze; Christine Leoff; Glenn Freshour; K. Dale Noel; Russell W. Carlson
Rhizobium etli CE3 bacteroids were isolated from Phaseolus vulgaris root nodules. The lipopolysaccharide (LPS) from the bacteroids was purified and compared with the LPS from laboratory-cultured R. etli CE3 and from cultures grown in the presence of anthocyanin. Comparisons were made of the O-chain polysaccharide, the core oligosaccharide, and the lipid A. Although LPS from CE3 bacteria and bacteroids are structurally similar, it was found that bacteroid LPS had specific modifications to both the O-chain polysaccharide and lipid A portions of their LPS. Cultures grown with anthocyanin contained modifications only to the O-chain polysaccharide. The changes to the O-chain polysaccharide consisted of the addition of a single methyl group to the 2-position of a fucosyl residue in one of the five O-chain trisaccharide repeat units. This same change occurred for bacteria grown in the presence of anthocyanin. This methylation change correlated with the inability of bacteroid LPS and LPS from anthocyanin-containing cultures to bind the monoclonal antibody JIM28. The core oligosaccharide region of bacteroid LPS and from anthocyanin-grown cultures was identical to that of LPS from normal laboratory-cultured CE3. The lipid A from bacteroids consisted exclusively of a tetraacylated species compared with the presence of both tetra- and pentaacylated lipid A from laboratory cultures. Growth in the presence of anthocyanin did not affect the lipid A structure. Purified bacteroids that could resume growth were also found to be more sensitive to the cationic peptides, poly-l-lysine, polymyxin-B, and melittin.