Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glenn P. Svensson is active.

Publication


Featured researches published by Glenn P. Svensson.


American Journal of Botany | 2005

Chemistry and geographic variation of floral scent in Yucca filamentosa (Agavaceae)

Glenn P. Svensson; Michael O. Hickman; Stefan Bartram; Wilhelm Boland; Olle Pellmyr; Robert A. Raguso

We identified volatiles from the floral headspace of Yucca filamentosa using gas chromatography and mass spectrometry and analyzed floral scent composition and variation among populations pollinated by different yucca moth species. Twenty-one scent compounds were repeatedly identified and most could be categorized into two major classes: (1) homoterpenes derived from the sesquiterpene alcohol nerolidol and (2) long chain aliphatic hydrocarbons. Two biosynthetic pathways are thus responsible for the majority of floral volatiles in Y. filamentosa. The homoterpene E-4,8-dimethylnona-1,3,7-triene, which is released systemically by higher plants upon herbivory, was the most abundant compound. Two di-oxygenated compounds not previously reported as floral compounds also were detected. No differentiation in floral scent was observed between populations pollinated by different yucca moths, nor was there any correlation between chemical distance and geographic distance among populations. The total release rate of volatiles differed significantly among populations, but not between populations with different pollinators. The combination of unique compounds and low variation in the fragrance blend may reflect highly selective attraction of obligate pollinators to flowers. The observed lack of differentiation in floral scent can putatively explain high moth-mediated gene flow among sites, but it does not explain conservation of odor composition across populations with different pollinators.


Journal of Chemical Ecology | 2003

Characteristic Odor of Osmoderma eremita Identified as a Male-Released Pheromone

Mattias C. Larsson; Jonas Hedin; Glenn P. Svensson; Till Tolasch; Wittko Francke

Osmoderma eremita (Scopoli) is an endangered scarab beetle living in hollow trees. It has mainly been known for its characteristic odor, typically described as a fruity, peachlike or plumlike aroma. The odor emanating from a single beetle can sometimes be perceived from a distance of several meters. In this paper, we show that the characteristic odor from O. eremita is caused by the compound (R)-(+)-γ-decalactone, released in large quantities mainly or exclusively by male beetles. Antennae from male and female beetles responded in a similar way to (R)-(+)-γ-decalactone in electroantennographic recordings. Field trapping experiments showed that (R)-(+)-γ-decalactone is a pheromone attracting female beetles. Lactones similar to (R)-(+)-γ-decalactone are frequently used as female-released sex pheromones by phytophagous scarabs. This is, however, the first evidence of a lactone used as a male-produced pheromone in scarab beetles. We propose that the strong signal from males is a sexually selected trait used to compete for females and matings. The signal could work within trees but also act as a guide to tree hollows, which are an essential resource for O. eremita. Males may, thus, attract females dispersing from their natal tree by advertising a suitable habitat. This signal could also be exploited by other males searching for tree hollows or for females, which would explain the catch of several males in our traps.


Journal of Chemical Ecology | 2004

Attraction of the larval predator Elater ferrugineus to the sex pheromone of its prey, Osmoderma eremita and its implication for conservation biology

Glenn P. Svensson; Mattias C. Larsson; Jonas Hedin

Elater ferrugineus is a threatened click beetle inhabiting old hollow trees. Its larvae consume larvae of other saproxylic insects including the threatened scarab beetle Osmoderma eremita. Recently, (R)-(+)-γ-decalactone was identified as a male-produced sex pheromone of O. eremita. Here we present evidence that E. ferrugineus adults use this odor as a kairomone for location of their prey. In field trapping experiments, significantly more trapping events of E. ferrugineus beetles were observed in Lindgren funnel traps baited with (R)-(+)-γ-decalactone than in control traps (20 vs. 1, respectively). Analyses of headspace collections from E. ferrugineus beetles indicate that the predator itself does not produce the substance. Both sexes were attracted to the prey pheromone, suggesting that E. ferrugineus males use the odor as an indirect cue for location of mates or of the tree hollows, which make up their habitat. When compared to pitfall traps, the Lindgren system was significantly more effective in trapping E. ferrugineus, and no difference could be established for O.eremita, showing the high potential to use odor-based systems to catch both species. We suggest that (R)-(+)-γ-decalactone could be used as a master signal in monitoring programs for these vulnerable beetle species, which are both regarded as indicators of the associated insect fauna of the threatened habitat of old hollow trees.


Conservation Biology | 2009

Pheromone monitoring of rare and threatened insects: exploiting a pheromone-kairomone system to estimate prey and predator abundance.

Mattias C. Larsson; Glenn P. Svensson

Pheromone-based monitoring is a promising new method for assessing the conservation status of many threatened insect species. We examined the versatility and usefulness of pheromone-based monitoring by integrating a pheromone-kairomone trapping system and pitfall trapping system in the monitoring of two saproxylic beetles, the hermit beetle Osmoderma eremita (Coleoptera: Scarabaeidae) and its predator Elater ferrugineus (Coleoptera: Elateridae), which live inside hollow trees. We performed mark-recapture studies of both species with unbaited pitfall traps in oak hollows combined with pheromone-baited funnel traps suspended from oak branches to intercept dispersing individuals. For O. eremita, the integrated trapping system showed that the population in the study sites may be considerably higher than estimates based on extrapolation from pitfall trapping alone (approximately 3400 vs. 1100 or 1800 individuals, respectively). Recaptures between odor-baited funnel traps showed that males and females had similar dispersal rates, but estimating the number of dispersing individuals was problematic due to declining recapture probability between subsequent capture events. Our conservative estimate, assuming a linear decrease in capture probability, suggested that around 1900 individuals, or at least half of the O. eremita population, may perform flights from their natal host trees, representing higher dispersal rates than previous estimates. E. ferrugineus was rarely caught in pitfall traps. One hundred thirty-nine individuals, likely almost exclusively females, were caught in odor-baited funnel traps with approximately 4% recapture probability. If recapture probability over consecutive capture events follows that of O. eremita, this would correspond to a total population size of 2500-3000 individuals of the predator; similar to its supposed prey O. eremita. Our results demonstrate that pheromone-based monitoring is a valuable tool in the study of species or life-history stages that would otherwise be inaccessible.


Journal of Chemical Ecology | 2001

Mating disruption of Plodia interpunctella in small-scale plots: Effects of pheromone blend, emission rates, and population density

Camilla Ryne; Glenn P. Svensson; Christer Löfstedt

An indoor mating disruption experiment was performed on the stored-product pest Plodia interpunctella. The female of this species emits a four-component pheromone blend consisting of Z9,E12–14 : OAc, Z9,E12–14 : OH, Z9,E12–14 : Ald, and Z9–14 : OAc. Mating of Plodia interpunctella was disrupted up to 93% by using synthetic pheromone in small-scale plot experiments. The study was performed in 2.5 m × 2.5 m × 2.5 m polythene cubicles housed in a greenhouse, and pheromones were released by MSTRS spraying every 15~min. The disruption effect was tested at different doses 0.075, 0.75, and 3.75 mg/spray (corresponding to 5, 50, and 250 μg/min), different pheromone formulas (one-component (Z9,E12–14 : OAc) and four-component), and at different population densities (10, 20, and 30 individuals, equivalent to 0.32, 0.64, and 0.96 individuals/m2). The moths were released into the cubicles and recaptured 24 hr later. The females were checked for spermatophore presence indicating successful mating. The mating was significantly suppressed in all treatments compared to the control. There was, however, no difference in mating activity between the one-component and four-component disruptants. In addition, EAG measurements were conducted with a portable device to keep track of aerial concentrations of pheromone. The results show that the one-component formula disrupts mating as efficiently as the more complete four-component blend at doses applied in this study. This fact improves the prospects for mating disruption of indoor pyralids, since many pyralid species share the major component in their pheromones, and, thus, can probably be controlled simultaneously by using this compound only.


Journal of Insect Conservation | 2013

Isolation by distance in saproxylic beetles may increase with niche specialization

Andrzej Oleksa; Igor J. Chybicki; Robert Gawroński; Glenn P. Svensson; Jaroslaw Burczyk

Species confined to temporally stable habitats are usually susceptible to habitat fragmentation, as living in long-lasting habitats is predicted to constrain evolution of dispersal ability. In Europe, saproxylic invertebrates associated with tree hollows are currently threatened due to the severe fragmentation of their habitat, but data on the population genetic consequences of such habitat decline are still scarce. By employing AFLP markers, we compared the spatial genetic structure of two ecologically and taxonomically related beetle species, Osmoderma barnabita and Protaetia marmorata (Cetoniidae). Both species are exclusively associated with tree hollows, but O. barnabita has a more restricted host preferences compared to P. marmorata. Analyses of spatial autocorrelation showed, in line with the predicted low dispersal potential of these saproxylic beetles, that both species are characterized by a strong kinship structure, which was more pronounced in the specialist O. barnabita than in the generalist P. marmorata. Individuals of both species sampled within single trees showed high relatedness (≈0.50 in O. barnabita and ≈0.15 in P. marmorata). Interestingly, groups of pheromone-emitting O. barnabita males sampled on the same tree trunk were found to be full brothers. Whether this result can be explained by kin selection to increase attraction of conspecific females for mating or by severe inbreeding of beetles within individual tree hollows needs further study. Although our studied populations were significantly inbred, our results suggest that the dispersal ability of Osmoderma beetles may be one order of magnitude greater than suggested by previous dispersal studies and acceptable levels of habitat fragmentation for metapopulation survival may be bigger than previously thought.


Journal of Chemical Ecology | 2006

Strong Conservation of Floral Scent Composition in Two Allopatric Yuccas

Glenn P. Svensson; Olle Pellmyr; Robert A. Raguso

Floral scent has been suggested to play a key role in the obligate pollination mutualism between yuccas and yucca moths. We analyzed floral fragrance compounds of Yucca elata with headspace collection followed by gas chromatography and mass spectrometry, and compared the odor blend with the recently characterized blend of the allopatric Yucca filamentosa. A principal component analysis based on 20 scent compounds revealed that the floral odor bouquets of Y. elata and Y. filamentosa are virtually identical. Although the two plants belong to the same section of capsular-fruited yuccas, they rely on different species of Tegeticula moths for pollination and probably have been allopatric for several million years. Yet, their floral odor blends are very similar, which may indicate that strong selection by obligate pollinators counteracts drift or divergence in this trait.


Journal of Economic Entomology | 2007

Evaluation of long-term mating disruption of Ephestia kuehniella and Plodia interpunctella (Lepidoptera: Pyralidae) in indoor storage facilities by pheromone traps and monitoring of relative aerial concentrations of pheromone.

Camilla Ryne; Glenn P. Svensson; Olle Anderbrant; Christer Löfstedt

Abstract The potential for pheromone-based mating disruption (MD) ofEphestia kuehniella (Walker) andPlodia interpunctella (Hübner) (Lepidoptera: Pyralidae) was investigated in two flour mills and a pet food distributor. Plastic sachets emitting 2–3 mg per d (Z,E)-9,12-tetradecadienyl acetate, the major pheromone component of both moth species, were used as MD dispensers, which were applied in grid systems resulting in one dispenser per 100 m3 of air volume. Pheromone traps with sticky inserts were used to monitor moth population fluctuations. To monitor pheromone levels in the air before, during, and after the treatment, electroantennographic (EAG) measurements were performed using a portable device. All localities showed decreased trap catches after application of MD. In two localities with low initial population densities, trap catches were reduced immediately after application of MD and remained very low, even several months after the MD treatment was terminated. In contrast, in a locality with a higher initial population density the reduction in trap catches was slower, and trap catches increased again soon after the termination of the MD treatment. Electrophysiological data showed not only increased aerial levels of pheromone during the treatment period but also levels that were higher than during pretreatment, even 12 mo after removal of MD dispensers. The localities had good ventilation, and the memory effect observed indicates that the pheromone adhered to surfaces that subsequently functioned as secondary dispensers. Customer complaints registered by one of the mills were 49% less in 2004, after 2 yr of MD compared with 2002, the year before the treatments began.


Proceedings of the Royal Society B: Biological Sciences; 280(1772), no 20132280 (2013) | 2013

Active pollination favours sexual dimorphism in floral scent

Tomoko Okamoto; Ryutaro Goto; Glenn P. Svensson; Makoto Kato

Zoophilous flowers often transmit olfactory signals to attract pollinators. In plants with unisexual flowers, such signals are usually similar between the sexes because attraction of the same animal to both male and female flowers is essential for conspecific pollen transfer. Here, we present a remarkable example of sexual dimorphism in floral signal observed in reproductively highly specialized clades of the tribe Phyllantheae (Phyllanthaceae). These plants are pollinated by species-specific, seed-parasitic Epicephala moths (Gracillariidae) that actively collect pollen from male flowers and pollinate the female flowers in which they oviposit; by doing so, they ensure seeds for their offspring. We found that Epicephala-pollinated Phyllanthaceae plants consistently exhibit major qualitative differences in scent between male and female flowers, often involving compounds derived from different biosynthetic pathways. In a choice test, mated female Epicephala moths preferred the scent of male flowers over that of female flowers, suggesting that male floral scent elicits pollen-collecting behaviour. Epicephala pollination evolved multiple times in Phyllantheae, at least thrice accompanied by transition from sexual monomorphism to dimorphism in floral scent. This is the first example in which sexually dimorphic floral scent has evolved to signal an alternative reward provided by each sex, provoking the pollinators legitimate altruistic behaviour.


Journal of Insect Conservation | 2012

Chemical ecology and insect conservation: optimising pheromone-based monitoring of the threatened saproxylic click beetle Elater ferrugineus

Glenn P. Svensson; Erik Hedenström; Palle Breistein; Joakim Bång; Mattias C. Larsson

Elater ferrugineus is a saproxylic click beetle inhabiting old deciduous trees in Europe. It is threatened throughout its area of distribution due to habitat loss. No efficient monitoring method has been available for this species, but observed attraction of females to (R)-(+)-γ-decalactone, which is a male-produced sex pheromone of its prey, the scarab beetle Osmoderma eremita, has led to the development of an odour lure for monitoring. In addition, four esters have recently been identified from the pheromone-producing gland in female E. ferrugineus, and a blend of these esters is highly attractive to conspecific males in the field, revealing an alternative odour-based method for monitoring this species. However, no rigorous analysis has been performed to check whether all four esters show biological activity in male E. ferrugineus, and whether its own sex pheromone is a more potent lure than the prey kairomone for monitoring of E. ferrugineus. In this study, we reinvestigated the E. ferrugineus sex pheromone, using electrophysiological and behavioural analyses, and found that only one of the esters, 7-methyloctyl (Z)-4-decenoate, is active. In addition, trapping experiments revealed that 7-methyloctyl (Z)-4-decenoate is a much more efficient attractant for male E. ferrugineus than the prey pheromone is for conspecific females, or any sex of O. eremita. With a very efficient odour lure at hand, novel information about current distribution, local population sizes, and dispersal ranges in E. ferrugineus can now be obtained, which can aid in conservation efforts to protect this threatened insect and its habitat.

Collaboration


Dive into the Glenn P. Svensson's collaboration.

Top Co-Authors

Avatar

Mattias C. Larsson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olle Rosenberg

Forestry Research Institute of Sweden

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge