Glenn Sivits
Amgen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Glenn Sivits.
Diabetes | 2009
Jing Xu; David J. Lloyd; Clarence Hale; Shanaka Stanislaus; Michelle Chen; Glenn Sivits; Steven Vonderfecht; Randy Ira Hecht; Yue-Sheng Li; Richard Lindberg; Jin-Long Chen; Dae Young Jung; Zhiyou Zhang; Hwi Jin Ko; Jason K. Kim; Murielle M. Véniant
OBJECTIVE—Fibroblast growth factor 21 (FGF21) has emerged as an important metabolic regulator of glucose and lipid metabolism. The aims of the current study are to evaluate the role of FGF21 in energy metabolism and to provide mechanistic insights into its glucose and lipid-lowering effects in a high-fat diet–induced obesity (DIO) model. RESEARCH DESIGN AND METHODS—DIO or normal lean mice were treated with vehicle or recombinant murine FGF21. Metabolic parameters including body weight, glucose, and lipid levels were monitored, and hepatic gene expression was analyzed. Energy metabolism and insulin sensitivity were assessed using indirect calorimetry and hyperinsulinemic-euglycemic clamp techniques. RESULTS—FGF21 dose dependently reduced body weight and whole-body fat mass in DIO mice due to marked increases in total energy expenditure and physical activity levels. FGF21 also reduced blood glucose, insulin, and lipid levels and reversed hepatic steatosis. The profound reduction of hepatic triglyceride levels was associated with FGF21 inhibition of nuclear sterol regulatory element binding protein-1 and the expression of a wide array of genes involved in fatty acid and triglyceride synthesis. FGF21 also dramatically improved hepatic and peripheral insulin sensitivity in both lean and DIO mice independently of reduction in body weight and adiposity. CONCLUSIONS—FGF21 corrects multiple metabolic disorders in DIO mice and has the potential to become a powerful therapeutic to treat hepatic steatosis, obesity, and type 2 diabetes.
Journal of Pharmacology and Experimental Therapeutics | 2009
Wei Gu; Hai Yan; Katherine Ann Winters; Renee Komorowski; Steven Vonderfecht; Larissa Atangan; Glenn Sivits; David R. Hill; Jie Yang; Vivian Bi; Yuqing Shen; Sylvia Hu; Tom Boone; Richard Lindberg; Murielle M. Véniant
Uncontrolled hepatic glucose output (HGO) contributes significantly to the pathological hyperglycemic state of patients with type 2 diabetes. Glucagon, through action on its receptor, stimulates HGO, thereby leading to increased glycemia. Antagonizing the glucagon signaling pathway represents an attractive therapeutic approach for the treatment of type 2 diabetes. We previously reported the generation and characterization of several high-affinity monoclonal antibodies (mAbs) targeting the glucagon receptor (GCGR). In the present study, we demonstrate that a 5-week treatment of diet-induced obese mice with mAb effectively normalized nonfasting blood glucose. Similar treatment also reduced fasting blood glucose without inducing hypoglycemia or other undesirable metabolic perturbations. In addition, no hypoglycemia was found in db/db mice that were treated with a combination of insulin and mAb. Long-term treatment with the mAb caused dose-dependent hyperglucagonemia and minimal to mild α-cell hyperplasia in lean mice. There was no evidence of pancreatic α-cell neoplastic transformation in mice treated with mAb for as long as 18 weeks. Treatment-induced hyperglucagonemia and α-cell hyperplasia were reversible after treatment withdrawal for periods of 4 and 10 weeks, respectively. It is noteworthy that pancreatic β-cell function was preserved, as demonstrated by improved glucose tolerance throughout the 18-week treatment period. Our studies further support the concept that long-term inhibition of GCGR signaling by a mAb could be an effective approach for controlling diabetic hyperglycemia.
Nature | 2013
David J. Lloyd; David J. St. Jean; Robert J.M. Kurzeja; Robert C. Wahl; Klaus Michelsen; Rod Cupples; Michelle Chen; John Wu; Glenn Sivits; Joan Helmering; Renee Komorowski; Kate S. Ashton; Lewis D. Pennington; Christopher Fotsch; Mukta Vazir; Kui Chen; Samer Chmait; Jiandong Zhang; Longbin Liu; Mark H. Norman; Kristin L. Andrews; Michael D. Bartberger; Gwyneth Van; Elizabeth J. Galbreath; Steven Vonderfecht; Minghan Wang; Steven R. Jordan; Murielle M. Véniant; Clarence Hale
Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic β-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK–GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.
American Journal of Physiology-endocrinology and Metabolism | 2010
Wei Gu; Katherine Ann Winters; Alykhan Motani; Renee Komorowski; Ying Zhang; Qingxiang Liu; Xiaosu Wu; Ingrid C. Rulifson; Glenn Sivits; Melissa Graham; Hai Yan; Paul Wang; Steve Moore; Tina Meng; Richard Lindberg; Murielle M. Véniant
Antagonism of the glucagon receptor (GCGR) is associated with increased circulating levels of glucagon-like peptide-1 (GLP-1). To investigate the contribution of GLP-1 to the antidiabetic actions of GCGR antagonism, we administered an anti-GCGR monoclonal antibody (mAb B) to wild-type mice and GLP-1 receptor knockout (GLP-1R KO) mice. Treatment of wild-type mice with mAb B lowered fasting blood glucose, improved glucose tolerance, and enhanced glucose-stimulated insulin secretion during an intraperitoneal glucose tolerance test (ipGTT). In contrast, treatment of GLP-1R KO mice with mAb B had little efficacy during an ipGTT. Furthermore, pretreatment with the GLP-1R antagonist exendin-(9-39) diminished the antihyperglycemic effects of mAb B in wild-type mice. To determine the mechanism whereby mAb B improves glucose tolerance, we generated a monoclonal antibody that specifically antagonizes the human GLP-1R. Using a human islet transplanted mouse model, we demonstrated that pancreatic islet GLP-1R signaling is required for the full efficacy of the GCGR antagonist. To identify the source of the elevated GLP-1 observed in GCGR mAb-treated mice, we measured active GLP-1 content in pancreas and intestine from db/db mice treated with anti-GCGR mAb for 8 wk. Elevated GLP-1 in GCGR mAb-treated mice was predominantly derived from increased pancreatic GLP-1 synthesis and processing. All together, these data show that pancreatic GLP-1 is a significant contributor to the glucose-lowering effects observed in response to GCGR antagonist treatment.
Journal of Medicinal Chemistry | 2014
Nobuko Nishimura; Mark H. Norman; Longbin Liu; Kevin C. Yang; Kate S. Ashton; Michael D. Bartberger; Samer Chmait; Jie Chen; Rod Cupples; Christopher Fotsch; Joan Helmering; Steven R. Jordan; Roxanne Kunz; Lewis D. Pennington; Steve F. Poon; Aaron C. Siegmund; Glenn Sivits; David J. Lloyd; Clarence Hale; David J. St. Jean
We have recently reported a novel approach to increase cytosolic glucokinase (GK) levels through the binding of a small molecule to its endogenous inhibitor, glucokinase regulatory protein (GKRP). These initial investigations culminated in the identification of 2-(4-((2S)-4-((6-amino-3-pyridinyl)sulfonyl)-2-(1-propyn-1-yl)-1-piperazinyl)phenyl)-1,1,1,3,3,3-hexafluoro-2-propanol (1, AMG-3969), a compound that effectively enhanced GK translocation and reduced blood glucose levels in diabetic animals. Herein we report the results of our expanded SAR investigations that focused on modifications to the aryl carbinol group of this series. Guided by the X-ray cocrystal structure of compound 1 bound to hGKRP, we identified several potent GK-GKRP disruptors bearing a diverse set of functionalities in the aryl carbinol region. Among them, sulfoximine and pyridinyl derivatives 24 and 29 possessed excellent potency as well as favorable PK properties. When dosed orally in db/db mice, both compounds significantly lowered fed blood glucose levels (up to 58%).
Journal of Pharmacology and Experimental Therapeutics | 2011
Wei Gu; David J. Lloyd; Narumol Chinookswong; Renee Komorowski; Glenn Sivits; Melissa Graham; Katherine A. Winters; Hai Yan; Laszlo G. Boros; Richard Lindberg; Murielle M. Véniant
Pharmacologic contributions of directly agonizing glucagon-like peptide 1 (GLP-1) receptor or antagonizing glucagon receptor (GCGR) on energy state and glucose homeostasis were assessed in diet-induced obese (DIO) mice. Metabolic rate and respiratory quotient (RQ), hyperglycemic clamp, stable isotope-based dynamic metabolic profiling (SiDMAP) studies of 13C-labeled glucose during glucose tolerance test (GTT) and gene expression were assessed in cohorts of DIO mice after a single administration of GLP-1 analog [GLP-1-(23)] or anti-GCGR antibody (Ab). GLP-1-(23) and GCGR Ab similarly improved GTT. GLP-1-(23) decreased food intake and body weight trended lower. GCGR Ab modestly decreased food intake without significant effect on body weight. GLP-1-(23) and GCGR Ab decreased RQ with GLP-1, causing a greater effect. In a hyperglycemic clamp, GLP-1-(23) reduced hepatic glucose production (HGP), increased glucose infusion rate (GIR), increased glucose uptake in brown adipose tissue, and increased whole-body glucose turnover, glycolysis, and rate of glycogen synthesis. GCGR Ab slightly decreased HGP, increased GIR, and increased glucose uptake in the heart. SiDMAP showed that GLP-1-(23) and GCGR Ab increased 13C lactate labeling from glucose, indicating that liver, muscle, and other organs were involved in the rapid disposal of glucose from plasma. GCGR Ab and GLP-1-(23) caused different changes in mRNA expression levels of glucose- and lipid metabolism-associated genes. The effect of GLP-1-(23) on energy state and glucose homeostasis was greater than GCGR Ab. Although GCGR antagonism is associated with increased circulating levels of GLP-1, most GLP-1-(23)-associated pharmacologic effects are more pronounced than GCGR Ab.
Journal of Medicinal Chemistry | 2014
Kate S. Ashton; Kristin L. Andrews; Marion C. Bryan; Jie Chen; Kui Chen; Michelle Chen; Samer Chmait; Michael Croghan; Rod Cupples; Christopher Fotsch; Joan Helmering; Steve R. Jordan; Robert J.M. Kurzeja; Klaus Michelsen; Lewis D. Pennington; Steve F. Poon; Glenn Sivits; Gwyneth Van; Steve L. Vonderfecht; Robert C. Wahl; Jiandong Zhang; David J. Lloyd; Clarence Hale; David J. St. Jean
Small molecule activators of glucokinase have shown robust efficacy in both preclinical models and humans. However, overactivation of glucokinase (GK) can cause excessive glucose turnover, leading to hypoglycemia. To circumvent this adverse side effect, we chose to modulate GK activity by targeting the endogenous inhibitor of GK, glucokinase regulatory protein (GKRP). Disrupting the GK-GKRP complex results in an increase in the amount of unbound cytosolic GK without altering the inherent kinetics of the enzyme. Herein we report the identification of compounds that efficiently disrupt the GK-GKRP interaction via a previously unknown binding pocket. Using a structure-based approach, the potency of the initial hit was improved to provide 25 (AMG-1694). When dosed in ZDF rats, 25 showed both a robust pharmacodynamic effect as well as a statistically significant reduction in glucose. Additionally, hypoglycemia was not observed in either the hyperglycemic or normal rats.
Journal of Medicinal Chemistry | 2014
David J. St. Jean; Kate S. Ashton; Michael D. Bartberger; Jie Chen; Samer Chmait; Rod Cupples; Elizabeth J. Galbreath; Joan Helmering; Fang-Tsao Hong; Steven R. Jordan; Longbin Liu; Roxanne Kunz; Klaus Michelsen; Nobuko Nishimura; Lewis D. Pennington; Steve F. Poon; Darren L. Reid; Glenn Sivits; Markian Stec; Seifu Tadesse; Nuria A. Tamayo; Gwyneth Van; Kevin C. Yang; Jiandong Zhang; Mark H. Norman; Christopher Fotsch; David J. Lloyd; Clarence Hale
In the previous report , we described the discovery and optimization of novel small molecule disruptors of the GK-GKRP interaction culminating in the identification of 1 (AMG-1694). Although this analogue possessed excellent in vitro potency and was a useful tool compound in initial proof-of-concept experiments, high metabolic turnover limited its advancement. Guided by a combination of metabolite identification and structure-based design, we have successfully discovered a potent and metabolically stable GK-GKRP disruptor (27, AMG-3969). When administered to db/db mice, this compound demonstrated a robust pharmacodynamic response (GK translocation) as well as statistically significant dose-dependent reductions in fed blood glucose levels.
Journal of Medicinal Chemistry | 2015
Lewis D. Pennington; Michael D. Bartberger; Michael Croghan; Kristin L. Andrews; Kate S. Ashton; Matthew P. Bourbeau; Jie Chen; Samer Chmait; Rod Cupples; Christopher Fotsch; Joan Helmering; Fang-Tsao Hong; Randall W. Hungate; Steven R. Jordan; Ke Kong; Longbin Liu; Klaus Michelsen; Carolyn Moyer; Nobuko Nishimura; Mark H. Norman; Andreas Reichelt; Aaron C. Siegmund; Glenn Sivits; Seifu Tadesse; Christopher M. Tegley; Gwyneth Van; Kevin C. Yang; Guomin Yao; Jiandong Zhang; David J. Lloyd
The HTS-based discovery and structure-guided optimization of a novel series of GKRP-selective GK-GKRP disrupters are revealed. Diarylmethanesulfonamide hit 6 (hGK-hGKRP IC50 = 1.2 μM) was optimized to lead compound 32 (AMG-0696; hGK-hGKRP IC50 = 0.0038 μM). A stabilizing interaction between a nitrogen atom lone pair and an aromatic sulfur system (nN → σ*S-X) in 32 was exploited to conformationally constrain a biaryl linkage and allow contact with key residues in GKRP. Lead compound 32 was shown to induce GK translocation from the nucleus to the cytoplasm in rats (IHC score = 0; 10 mg/kg po, 6 h) and blood glucose reduction in mice (POC = -45%; 100 mg/kg po, 3 h). X-ray analyses of 32 and several precursors bound to GKRP were also obtained. This novel disrupter of GK-GKRP binding enables further exploration of GKRP as a potential therapeutic target for type II diabetes and highlights the value of exploiting unconventional nonbonded interactions in drug design.
Journal of Medicinal Chemistry | 2015
Nuria A. Tamayo; Mark H. Norman; Michael D. Bartberger; Fang-Tsao Hong; Yunxin Bo; Longbin Liu; Nobuko Nishimura; Kevin C. Yang; Seifu Tadesse; Christopher Fotsch; Jie Chen; Samer Chmait; Rod Cupples; Clarence Hale; Steven R. Jordan; David J. Lloyd; Glenn Sivits; Gwyneth Van; David J. St. Jean
The glucokinase-glucokinase regulatory protein (GK-GKRP) complex plays an important role in controlling glucose homeostasis in the liver. We have recently disclosed a series of arylpiperazines as in vitro and in vivo disruptors of the GK-GKRP complex with efficacy in rodent models of type 2 diabetes mellitus (T2DM). Herein, we describe a new class of aryl sulfones as disruptors of the GK-GKRP complex, where the central piperazine scaffold has been replaced by an aromatic group. Conformational analysis and exploration of the structure-activity relationships of this new class of compounds led to the identification of potent GK-GKRP disruptors. Further optimization of this novel series delivered thiazole sulfone 93, which was able to disrupt the GK-GKRP interaction in vitro and in vivo and, by doing so, increases cytoplasmic levels of unbound GK.