Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glenna L. Drisko is active.

Publication


Featured researches published by Glenna L. Drisko.


Langmuir | 2011

Strong Silica Monoliths with Large Mesopores Prepared Using Agarose Gel Templates

Glenna L. Drisko; Xingdong Wang; Rachel A. Caruso

Mesoporous silica pellets with controllable shape and pore size were prepared using agarose gel templates. Robust (compressive strength of 3.3-25.1 MPa), crack-free silica monoliths have been produced with large mesopores (14-23 nm), high surface areas (410-540 m(2) g(-1)), and large pore volumes (1.1-1.2 cm(3) g(-1)). The synthesis was achieved by infusing preformed agarose gels with tetraethyl orthosilicate and the nonpolar condensation catalyst tetrabutyl ammonium fluoride. The infiltrated gels were transferred to water to initiate hydrolysis and condensation of the silica precursor. Fluoride catalyzed the gelation of silica in a matter of minutes; hence, the oxide maintained the shape of the agarose pellet. The mesopore size could be modified by altering the weight percent of agarose gel used. The method employed here is simple and reproducible. As these materials have such large mesopore dimensions, they could be used as hard templates or could be specifically functionalized for use in environmental remediation, as environmentally responsive materials, biocatalysts, or catalysts.


ACS Applied Materials & Interfaces | 2009

Pore size and volume effects on the incorporation of polymer into macro- and mesoporous zirconium titanium oxide membranes.

Glenna L. Drisko; Lu Cao; Maryline Chee Kimling; Simon Harrisson; Vittorio Luca; Rachel A. Caruso

Macro- and mesoporous hybrid materials have applications in the fields of drug delivery, catalysis, biosensing, and separations. The pore size requirements must be well-understood to maximize the performance (e.g., load capacity and accessibility) of such materials. Hybrid materials were prepared by coating five distinct macroporous commercial membranes with zirconium titanium oxide through sol-gel chemistry. Calcination of these templated materials produced oxide membranes which had a suite of macropore and mesopore architectures, pore volumes, and surface areas. These differences in physical properties were used to conduct a fundamental study on the relationship between the pore size and volume and the polymer incorporation. Metal oxide membranes were postsynthetically modified with poly(ethyleneimine) (PEI) ranging in molecular weight from 1300 to 1 000 000 Da (1.2-11 nm in hydrodynamic diameter). The incorporation of the polymer from a 9 wt % solution at pH 10 was highly dependent on the pore size and pore volume. As the surface area increased, loading capacity decreased, indicating that much of the increased internal surface, due to small pore diameters (< or = 8 nm), was inaccessible to the macromolecules. Exclusion of PEI from small mesopores was apparent even for the lowest molecular weight polymer. A high maximum loading of 1.25 mg m(-2) of 600 000-1 000 000 Da PEI was achieved in the metal oxide with the largest minimum mesopore diameter. Thus, mesopore diameter and pore volume must be considered when designing a mesoporous solid support.


Langmuir | 2011

Monitoring bisphosphonate surface functionalization and acid stability of hierarchically porous titanium zirconium oxides.

Andreas Ide; Glenna L. Drisko; Nicholas Scales; Vittorio Luca; Carl H. Schiesser; Rachel A. Caruso

To take advantage of the full potential of functionalized transition metal oxides, a well-understood nonsilane based grafting technique is required. The functionalization of mixed titanium zirconium oxides was studied in detail using a bisphosphonic acid, featuring two phosphonic acid groups with high surface affinity. The bisphosphonic acid employed was coupled to a UV active benzamide moiety in order to track the progress of the surface functionalization in situ. Using different material compositions, altering the pH environment, and looking at various annealing conditions, key features of the functionalization process were identified that consequently will allow for intelligent material design. Loading with bisphosphonic acid was highest on supports calcined at 650 °C compared to lower calcination temperatures: A maximum capacity of 0.13 mmol g(-1) was obtained and the adsorption process could be modeled with a pseudo-second-order rate relationship. Heating at 650 °C resulted in a phase transition of the mixed binary oxide to a ternary oxide, titanium zirconium oxide in the srilankite phase. This phase transition was crucial in order to achieve high loading of the bisphosphonic acid and enhanced chemical stability in highly acidic solutions. Due to the inert nature of phosphorus-oxygen-metal bonds, materials functionalized by bisphosphonic acids showed increased chemical stability compared to their nonfunctionalized counterparts in harshly acidic solutions. Leaching studies showed that the acid stability of the functionalized material was improved with a partially crystalline srilankite phase. The materials were characterized using nitrogen sorption, X-ray powder diffraction, and UV-vis spectroscopy; X-ray photoelectron spectroscopy was used to study surface coverage with the bisphosphonic acid molecules.


Langmuir | 2010

One-Pot Preparation and Uranyl Adsorption Properties of Hierarchically Porous Zirconium Titanium Oxide Beads using Phase Separation Processes to Vary Macropore Morphology

Glenna L. Drisko; Maryline Chee Kimling; Nicholas Scales; Andreas Ide; Erden Sizgek; Rachel A. Caruso; Vittorio Luca

A simple and engineering friendly one-step process has been used to prepare zirconium titanium mixed oxide beads with porosity on multiple length scales. In this facile synthesis, the bead diameter and the macroporosity can be conveniently controlled through minor alterations in the synthesis conditions. The precursor solution consisted of poly(acrylonitrile) dissolved in dimethyl sulfoxide to which was added block copolymer Pluronic F127 and metal alkoxides. The millimeter-sized spheres were fabricated with differing macropore dimensions and morphology through dropwise addition of the precursor solution into a gelation bath consisting of water (H(2)O beads) or liquid nitrogen (LN(2) beads). The inorganic beads obtained after calcination (550 °C in air) had surface areas of 140 and 128 m(2) g(-1), respectively, and had varied pore architectures. The H(2)O-derived beads had much larger macropores (5.7 μm) and smaller mesopores (6.3 nm) compared with the LN(2)-derived beads (0.8 μm and 24 nm, respectively). Pluronic F127 was an important addition to the precursor solution, as it resulted in increased surface area, pore volume, and compressive yield point. From nonambient XRD analysis, it was concluded that the zirconium and titanium were homogeneously mixed within the oxide. The beads were analyzed for surface accessibility and adsorption rate by monitoring the uptake of uranyl species from solution. The macropore diameter and morphology greatly impacted surface accessibility. Beads with larger macropores reached adsorption equilibrium much faster than the beads with a more tortuous macropore network.


ACS Applied Materials & Interfaces | 2012

Synthesis and photocatalytic activity of titania monoliths prepared with controlled macro- and mesopore structure.

Glenna L. Drisko; Andrés Zelcer; Xingdong Wang; Rachel A. Caruso; Galo J. A. A. Soler-Illia

Herein, we report a one-pot synthesis of crack-free titania monoliths with hierarchical macro-mesoporosity and crystalline anatase walls. Bimodal macroporosity is created through the polymer-induced phase separation of poly(furfuryl alcohol). The cationic polymerization of furfuryl alcohol is performed in situ and subsequently the polymer becomes immiscible with the aqueous phase, which includes titanic acid. Addition of template, Pluronic F127, increases the mesopore volume and diameter of the resulting titania, as the poly(ethylene glycol) block interacts with the titania precursor, leading to assisted assembly of the metal oxide framework. The hydrophobic poly(propylene glycol) micelle core could itself be swollen with monomeric and oligomeric furfuryl alcohol, allowing for mesopores as large as 18 nm. Variations in synthesis parameters affect porosity; for instance furfuryl alcohol content changes the size and texture of the macropores, water content changes the grain size of the titania and Pluronic F127 content changes the size and volume of the mesopore. Morphological manipulation improves the photocatalytic degradation of methylene blue. Light can penetrate several millimeters into the porous monolith, giving these materials possible application in commercial devices.


Langmuir | 2010

Size Matters: Incorporation of Poly(acrylic acid) and Small Molecules into Hierarchically Porous Metal Oxides Prepared with and without Templates

Glenna L. Drisko; Paolo Imperia; Massey de los Reyes; Vittorio Luca; Rachel A. Caruso

Template synthesis of metal oxides can create materials with highly controlled and reproducible pore structures that can be optimized for particular applications. Zirconium titanium oxides (25:75 mol %) with three different pore structures were synthesized in order to relate polymer loading capacity to macropore architecture. Sol-gel chemistry was used to prepare the materials in conjunction with (i) agarose gel templating, (ii) no template, and (iii) stearic acid templating. The three materials possessed high surface areas (212-316 m(2) g(-1)). Surface modification was performed postsynthetically using propionic acid (a monomer), glutaric acid (a dimer), and three molecular weights of poly(acrylic acid) (2000, 100,000, and 250,000 g mol(-1)). Higher loading (mg g(-1)) was observed for the polymers than for the small molecules. Following surface modification, a perceptible decrease in surface area and mesopore volume was noted, but both mesoporosity and macroporosity were retained. The pore architecture had a strong bearing on the quantity and rate of polymer incorporation into metal oxides. The templated pellet with hierarchical porosity outperformed the nontemplated powder and the mesoporous monolith (in both loading capacity and surface coverage). The materials were subjected to irradiation with (60)Co gamma-rays to determine the radiolytic stability of the inorganic support and the hybrid material containing the monomer, dimer, and polymer. The polymer and the metal oxide substrate demonstrated notable radiolytic stability.


ACS Applied Materials & Interfaces | 2013

One-pot preparation and CO2 adsorption modeling of porous carbon, metal oxide, and hybrid beads.

Glenna L. Drisko; Aquino C; Paul Feron; Rachel A. Caruso; Simon Harrisson

Hierarchically porous carbon (C), metal oxide (ZrTi), or carbon-metal oxide (CZrTi) hybrid beads are synthesized in one pot through the in situ self-assembly of Pluronic F127, titanium and zirconium propoxides, and polyacrylonitrile (PAN). Upon contact with water, a precipitation of PAN from the liquid phase occurs concurrently with polymerization and phase separation of the inorganic precursors. The C, ZrTi, and CZrTi materials have similar morphologies but different surface chemistries. The adsorption of carbon dioxide by each material has been studied and modeled using the Langmuir-Freundlich equation, generating parameters that are used to calculate the surface affinity distributions. The Langmuir, Freundlich, Tóth, and Temkin models were also applied but gave inferior fits, indicating that the adsorption occurred on an inhomogeneous surface reaching a maximum capacity as available surface sites became saturated. The carbon beads have higher surface affinity for CO2 than the hybrid and metal oxide materials.


ACS Applied Materials & Interfaces | 2017

Double-Sided Electrochromic Device Based on Metal–Organic Frameworks

Issam Mjejri; Cara M. Doherty; Marta Rubio-Martinez; Glenna L. Drisko; Aline Rougier

Devices displaying controllably tunable optical properties through an applied voltage are attractive for smart glass, mirrors, and displays. Electrochromic material development aims to decrease power consumption while increasing the variety of attainable colors, their brilliance, and their longevity. We report the first electrochromic device constructed from metal organic frameworks (MOFs). Two MOF films, HKUST-1 and ZnMOF-74, are assembled so that the oxidation of one corresponds to the reduction of the other, allowing the two sides of the device to simultaneously change color. These MOF films exhibit cycling stability unrivaled by other MOFs and a significant optical contrast in a lithium-based electrolyte. HKUST-1 reversibly changed from bright blue to light blue and ZnMOF-74 from yellow to brown. The electrochromic device associates the two MOF films via a PMMA-lithium based electrolyte membrane. The color-switching of these MOFs does not arise from an organic-linker redox reaction, signaling unexplored possibilities for electrochromic MOF-based materials.


Langmuir | 2009

Template Synthesis and Adsorption Properties of Hierarchically Porous Zirconium Titanium Oxides

Glenna L. Drisko; Vittorio Luca; Erden Sizgek; Nicholas Scales; Rachel A. Caruso


Chemistry of Materials | 2010

One-Pot Synthesis of Hierarchically Structured Ceramic Monoliths with Adjustable Porosity

Glenna L. Drisko; Andrés Zelcer; Vittorio Luca; Rachel A. Caruso; Galo J. A. A. Soler-Illia

Collaboration


Dive into the Glenna L. Drisko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vittorio Luca

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar

Nicholas Scales

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar

Andrés Zelcer

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Erden Sizgek

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Harrisson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge