Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glennon W. Simmons is active.

Publication


Featured researches published by Glennon W. Simmons.


Biosensors and Bioelectronics | 2009

Nano-bio-chips for high performance multiplexed protein detection: Determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels

Jesse V. Jokerst; Archana Raamanathan; Nicolaos Christodoulides; Pierre N. Floriano; Amanda A. Pollard; Glennon W. Simmons; Jorge Wong; Carole Gage; Wieslaw B. Furmaga; Spencer W. Redding; John T. McDevitt

The integration of semiconductor nanoparticle quantum dots (QDs) into a modular, microfluidic biosensor for the multiplexed quantitation of three important cancer markers, carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), and Her-2/Neu (C-erbB-2) was achieved. The functionality of the integrated sample processing, analyte capture and detection modalities was demonstrated using both serum and whole saliva specimens. Here, nano-bio-chips that employed a fluorescence transduction signal with QD-labeled detecting antibody were used in combination with antigen capture by a microporous agarose bead array supported within a microfluidics ensemble so as to complete the sandwich-type immunoassay. The utilization of QD probes in this miniaturized biosensor format resulted in signal amplification 30 times relative to that of standard molecular fluorophores as well as affording a reduction in observed limits of detection by nearly 2 orders of magnitude (0.02 ng/mL CEA; 0.11 pM CEA) relative to enzyme-linked immunosorbent assay (ELISA). Assay validation studies indicate that measurements by the nano-bio-chip system correlate to standard methods at R(2)=0.94 and R(2)=0.95 for saliva and serum, respectively. This integrated nano-bio-chip assay system, in tandem with next-generation fluorophores, promises to be a sensitive, multiplexed tool for important diagnostic and prognostic applications.


Lab on a Chip | 2008

Integration of semiconductor quantum dots into nano-bio-chip systems for enumeration of CD4+ T cell counts at the point-of-need

Jesse V. Jokerst; Pierre N. Floriano; Nicolaos Christodoulides; Glennon W. Simmons; John T. McDevitt

Recent humanitarian efforts have led to the widespread release of antiretroviral drugs for the treatment of the more than 33 million HIV afflicted people living in resource-scarce settings. Here, the enumeration of CD4+ T lymphocytes is required to establish the level at which the immune system has been compromised. The gold standard method used in developed countries, based on flow cytometry, though widely accepted and accurate, is precluded from widespread use in resource-scarce settings due to its high expense, high technical requirements, difficulty in operation-maintenance and the lack of portability for these sophisticated laboratory-confined systems. As part of continuing efforts to develop practical diagnostic instrumentation, the integration of semiconductor nanocrystals (quantum dots, QDs) into a portable microfluidic-based lymphocyte capture and detection device is completed. This integrated system is capable of isolating and counting selected lymphocyte sub-populations (CD3+CD4+) from whole blood samples. By combining the unique optical properties of the QDs with the sample handling capabilities and cost effectiveness of novel microfluidic systems, a practical, portable lymphocyte measurement modality that correlates nicely with flow cytometry (R2 = 0.97) has been developed. This QD-based system reduces the optical requirements significantly relative to molecular fluorophores and the mini-CD4 counting device is projected to be suitable for use in both point-of-need and resource-scarce settings.


Cancer Prevention Research | 2015

A Multiplexable, Microfluidic Platform for the Rapid Quantitation of a Biomarker Panel for Early Ovarian Cancer Detection at the Point-of-Care

Basil Shadfan; Archana Simmons; Glennon W. Simmons; Andy Ho; Jorge Wong; Karen H. Lu; Robert C. Bast; John T. McDevitt

Point-of-care (POC) diagnostic platforms have the potential to enable low-cost, large-scale screening. As no single biomarker is shed by all ovarian cancers, multiplexed biomarker panels promise improved sensitivity and specificity to address the unmet need for early detection of ovarian cancer. We have configured the programmable bio-nano-chip (p-BNC)—a multiplexable, microfluidic, modular platform—to quantify a novel multi-marker panel comprising CA125, HE4, MMP-7, and CA72-4. The p-BNC is a bead-based immunoanalyzer system with a credit-card–sized footprint that integrates automated sample metering, bubble and debris removal, reagent storage and waste disposal, permitting POC analysis. Multiplexed p-BNC immunoassays demonstrated high specificity, low cross-reactivity, low limits of detection suitable for early detection, and a short analysis time of 43 minutes. Day-to-day variability, a critical factor for longitudinally monitoring biomarkers, ranged between 5.4% and 10.5%, well below the biologic variation for all four markers. Biomarker concentrations for 31 late-stage sera correlated well (R2 = 0.71 to 0.93 for various biomarkers) with values obtained on the Luminex platform. In a 31 patient cohort encompassing early- and late-stage ovarian cancers along with benign and healthy controls, the multiplexed p-BNC panel was able to distinguish cases from controls with 68.7% sensitivity at 80% specificity. Utility for longitudinal biomarker monitoring was demonstrated with prediagnostic plasma from 2 cases and 4 controls. Taken together, the p-BNC shows strong promise as a diagnostic tool for large-scale screening that takes advantage of faster results and lower costs while leveraging possible improvement in sensitivity and specificity from biomarker panels. Cancer Prev Res; 8(1); 37–48. ©2014 AACR.


Cancer Prevention Research | 2012

Programmable Bio-Nano-Chip Systems for Serum CA125 Quantification: Toward Ovarian Cancer Diagnostics at the Point-of-Care

Archana Raamanathan; Glennon W. Simmons; Nicolaos Christodoulides; Pierre N. Floriano; Wieslaw B. Furmaga; Spencer W. Redding; Karen H. Lu; Robert C. Bast; John T. McDevitt

Point-of-care (POC) implementation of early detection and screening methodologies for ovarian cancer may enable improved survival rates through early intervention. Current laboratory-confined immunoanalyzers have long turnaround times and are often incompatible with multiplexing and POC implementation. Rapid, sensitive, and multiplexable POC diagnostic platforms compatible with promising early detection approaches for ovarian cancer are needed. To this end, we report the adaptation of the programmable bio-nano-chip (p-BNC), an integrated, microfluidic, and modular (programmable) platform for CA125 serum quantitation, a biomarker prominently implicated in multimodal and multimarker screening approaches. In the p-BNCs, CA125 from diseased sera (Bio) is sequestered and assessed with a fluorescence-based sandwich immunoassay, completed in the nano-nets (Nano) of sensitized agarose microbeads localized in individually addressable wells (Chip), housed in a microfluidic module, capable of integrating multiple sample, reagent and biowaste processing, and handling steps. Antibody pairs that bind to distinct epitopes on CA125 were screened. To permit efficient biomarker sequestration in a three-dimensional microfluidic environment, the p-BNC operating variables (incubation times, flow rates, and reagent concentrations) were tuned to deliver optimal analytical performance under 45 minutes. With short analysis times, competitive analytical performance (inter- and intra-assay precision of 1.2% and 1.9% and limit of detection of 1.0 U/mL) was achieved on this minisensor ensemble. Furthermore, validation with sera of patients with ovarian cancer (n = 20) showed excellent correlation (R2 = 0.97) with gold-standard ELISA. Building on the integration capabilities of novel microfluidic systems programmed for ovarian cancer, the rapid, precise, and sensitive miniaturized p-BNC system shows strong promise for ovarian cancer diagnostics. Cancer Prev Res; 5(5); 706–16. ©2012 AACR.


Drug and Alcohol Dependence | 2015

Application of programmable bio-nano-chip system for the quantitative detection of drugs of abuse in oral fluids

Nicolaos Christodoulides; Richard De La Garza; Glennon W. Simmons; Michael P. McRae; Jorge Wong; Thomas F. Newton; Regina Smith; James J. Mahoney; Justin Hohenstein; Sobeyda Gomez; Pierre N. Floriano; Humberto Talavera; Daniel J. Sloan; David E. Moody; David M. Andrenyak; Thomas R. Kosten; Ahmed Haque; John T. McDevitt

OBJECTIVE There is currently a gap in on-site drug of abuse monitoring. Current detection methods involve invasive sampling of blood and urine specimens, or collection of oral fluid, followed by qualitative screening tests using immunochromatographic cartridges. While remote laboratories then may provide confirmation and quantitative assessment of a presumptive positive, this instrumentation is expensive and decoupled from the initial sampling making the current drug-screening program inefficient and costly. The authors applied a noninvasive oral fluid sampling approach integrated with the in-development chip-based Programmable bio-nano-chip (p-BNC) platform for the detection of drugs of abuse. METHOD The p-BNC assay methodology was applied for the detection of tetrahydrocannabinol, morphine, amphetamine, methamphetamine, cocaine, methadone and benzodiazepines, initially using spiked buffered samples and, ultimately, using oral fluid specimen collected from consented volunteers. RESULTS Rapid (∼10min), sensitive detection (∼ng/mL) and quantitation of 12 drugs of abuse was demonstrated on the p-BNC platform. Furthermore, the system provided visibility to time-course of select drug and metabolite profiles in oral fluids; for the drug cocaine, three regions of slope were observed that, when combined with concentration measurements from this and prior impairment studies, information about cocaine-induced impairment may be revealed. CONCLUSIONS This chip-based p-BNC detection modality has significant potential to be used in the future by law enforcement officers for roadside drug testing and to serve a variety of other settings, including outpatient and inpatient drug rehabilitation centers, emergency rooms, prisons, schools, and in the workplace.


Journal of Drug Abuse | 2015

Next Generation Programmable Bio-Nano-Chip System for On-Site Quantitative Drug Detection in Oral Fluids

Nicolaos Christodoulides; Richard De La Garza; Glennon W. Simmons; Michael P. McRae; Jorge Wong; Thomas F. Newton; Thomas R. Kosten; Ahmed Haque; John T. McDevitt

Current on-site drug of abuse detection methods involve invasive sampling of blood and urine specimens, or collection of oral fluid, followed by qualitative screening tests using immunochromatographic cartridges. Test confirmation and quantitative assessment of a presumptive positive are then provided by remote laboratories, an inefficient and costly process decoupled from the initial sampling. Recently, a new noninvasive oral fluid sampling approach that is integrated with the chip-based Programmable Bio-Nano-Chip (p-BNC) platform has been developed for the rapid (~ 10 minutes), sensitive detection (~ ng/ml) and quantitation of 12 drugs of abuse. Furthermore, the system can provide the time-course of select drug and metabolite profiles in oral fluids. For cocaine, we observed three slope components were correlated with cocaine-induced impairment using this chipbased p-BNC detection modality. Thus, this p-BNC has significant potential for roadside drug testing by law enforcement officers. Initial work reported on chipbased drug detection was completed using ‘macro’ or “chip in the lab” prototypes, that included metal encased “flow cells”, external peristaltic pumps and a bench-top analyzer system instrumentation. We now describe the next generation miniaturized analyzer instrumentation along with customized disposables and sampling devices. These tools will offer real-time oral fluid drug monitoring capabilities, to be used for roadside drug testing as well as testing in clinical settings as a non-invasive, quantitative, accurate and sensitive tool to verify patient adherence to treatment.


Journal of Biosensors and Bioelectronics | 2015

Programmable Bio-Nano-Chip System: A Flexible Diagnostic Platform that Learns

John T. McDevitt; Michael P. McRae; Glennon W. Simmons; Nicolaos Christodoulides

Over the past few decades, the use of biomarkers has become increasingly intrinsic to the practice of medicine and clinical decisionmaking. Clinically validated biomarkers-whether nucleic acid, protein, or metabolite—provide health care providers and clinicians a means to quickly and objectively measure, track, and diagnose a patient’s past and present physiological state for a wide range of conditions. As a result, biomarkers help patients receive appropriate care, which in turn helps reduce healthcare costs [1,2]. Biomarker-based tests are typically developed by diagnostic companies, and are often purchased and performed by medical testing companies. Biomarkers also aid pharmaceutical companies in quickly and efficiently screening their candidate drug products for dosing, pharmacokinetics, safety, and efficacy, thus simultaneously speeding up development and lowering the costs of drug. Upstream in the R&D continuum, early-stage researchers look for biomarkers to help better understand disease etiologies.


Frontiers in Public Health | 2017

Innovative Programmable Bio-Nano-Chip Digitizes Biology Using Sensors That Learn Bridging Biomarker Discovery and Clinical Implementation

Nicolaos Christodoulides; Michael P. McRae; Timothy J. Abram; Glennon W. Simmons; John T. McDevitt

The lack of standard tools and methodologies and the absence of a streamlined multimarker approval process have hindered the translation rate of new biomarkers into clinical practice for a variety of diseases afflicting humankind. Advanced novel technologies with superior analytical performance and reduced reagent costs, like the programmable bio-nano-chip system featured in this article, have potential to change the delivery of healthcare. This universal platform system has the capacity to digitize biology, resulting in a sensor modality with a capacity to learn. With well-planned device design, development, and distribution plans, there is an opportunity to translate benchtop discoveries in the genomics, proteomics, metabolomics, and glycomics fields by transforming the information content of key biomarkers into actionable signatures that can empower physicians and patients for a better management of healthcare. While the process is complicated and will take some time, showcased here are three application areas for this flexible platform that combines biomarker content with minimally invasive or non-invasive sampling, such as brush biopsy for oral cancer risk assessment; serum, plasma, and small volumes of blood for the assessment of cardiac risk and wellness; and oral fluid sampling for drugs of abuse testing at the point of need.


Bioanalysis | 2016

Challenges and opportunities for translating medical microdevices: insights from the programmable bio-nano-chip.

Michael P. McRae; Glennon W. Simmons; John T. McDevitt

This perspective highlights the major challenges for the bioanalytical community, in particular the area of lab-on-a-chip sensors, as they relate to point-of-care diagnostics. There is a strong need for general-purpose and universal biosensing platforms that can perform multiplexed and multiclass assays on real-world clinical samples. However, the adoption of novel lab-on-a-chip/microfluidic devices has been slow as several key challenges remain for the translation of these new devices to clinical practice. A pipeline of promising medical microdevice technologies will be made possible by addressing the challenges of integration, failure to compete with cost and performance of existing technologies, requisite for new content, and regulatory approval and clinical adoption.


Proceedings of SPIE | 2014

Programmable bio-nano-chip system for saliva diagnostics

Nicolaos Christodoulides; Richard De La Garza; Glennon W. Simmons; Michael P. McRae; Jorge Wong; Thomas R. Kosten; Craig S. Miller; Jeffrey L. Ebersole; John T. McDevitt

This manuscript describes programmable Bio-Nano-Chip (p-BNC) approach that serves as miniaturized assay platform designed for the rapid detection and quantitation of multiple analytes in biological fluids along with the specific applications in salivary diagnostics intended for the point of need (PON). Included here are oral fluid-based tests for local periodontal disease, systemic cardiac disease and multiplexed tests for drugs of abuse.

Collaboration


Dive into the Glennon W. Simmons's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Archana Raamanathan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert C. Bast

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Amanda A. Pollard

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge