Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glenys Chidlow is active.

Publication


Featured researches published by Glenys Chidlow.


Emerging Infectious Diseases | 2008

Global Distribution of Novel Rhinovirus Genotype

Thomas Briese; Neil Renwick; Marietjie Venter; Richard G. Jarman; Dhrubaa Ghosh; Sophie Köndgen; Sanjaya K. Shrestha; A. Mette Hoegh; Inmaculada Casas; Edgard V. Adjogoua; Chantal Akoua-Koffi; Khin Saw Aye Myint; David T. Williams; Glenys Chidlow; Ria van den Berg; Cristina Calvo; Orienka Koch; Gustavo Palacios; Vishal Kapoor; Joseph Villari; Samuel R. Dominguez; Kathryn V. Holmes; Gerry Harnett; David Smith; John S. Mackenzie; Heinz Ellerbrok; Brunhilde Schweiger; Kristian Schønning; Mandeep S. Chadha; Fabian H. Leendertz

Global surveillance for a novel rhinovirus genotype indicated its association with community outbreaks and pediatric respiratory disease in Africa, Asia, Australia, Europe, and North America. Molecular dating indicates that these viruses have been circulating for at least 250 years.


The Journal of Infectious Diseases | 2004

Use of the P Gene to Genotype Human Metapneumovirus Identifies 4 Viral Subtypes

Ian M. Mackay; Seweryn Bialasiewicz; Zubair Waliuzzaman; Glenys Chidlow; David C. Fegredo; Somprasong Laingam; Penny Adamson; Gerald B. Harnett; William D. Rawlinson; Michael D. Nissen

This study, conducted during 2001-2003, undertook the screening of patients with acute infectious respiratory-tract disease. A random selection of positive specimens was used for sequencing studies of the human metapneumovirus (hMPV) nucleoprotein gene and the phosphoprotein (P) gene. Australian and international sequences were compared, and a global classification scheme was developed. The hMPV P gene was an ideal molecular target for the detection and genotyping of hMPV. The region contained conserved sequences for reverse-transcriptase-polymerase chain-reaction primers and adequate variability to permit the accurate genotyping of the virus into 2 main lineages and 4 sublineages. Establishing viral identity is essential for the linking of genotype and disease severity.


Journal of Clinical Microbiology | 2010

Duplex Real-Time Reverse Transcriptase PCR Assays for Rapid Detection and Identification of Pandemic (H1N1) 2009 and Seasonal Influenza A/H1, A/H3, and B Viruses

Glenys Chidlow; Gerald B. Harnett; Simon Williams; Avram Levy; David J. Speers; David W. Smith

ABSTRACT Reports of a novel influenza virus type A (H1N1), now designated by the World Health Organization as pandemic (H1N1) 2009, emerged from the United States and Mexico in April 2009. The management of the pandemic in Australia required rapid and reliable testing of large numbers of specimens for the novel influenza strain and differentiation from seasonal influenza strains. A real-time reverse transcriptase PCR (RT-PCR) assay for the detection of pandemic (H1N1) 2009 was designed and used with existing real-time RT-PCR assays for seasonal influenza viruses A and B. MS2 coliphage was added to all samples and amplified as a quality control. Three duplex RT-PCR assays, each containing two primer pairs and corresponding 5′ nuclease probes, were initially evaluated on control material and stored samples and showed high sensitivity and specificity. More than 11,000 clinical samples were then tested for influenza A and B matrix gene targets and specific hemagglutinin gene targets for seasonal influenza A/H1, A/H3, and pandemic A (H1N1) 2009. Minimum sensitivities and specificities were 98.8% and 100%, respectively, for pandemic (H1N1) 2009, 81.5% and 98.9% for seasonal A/H1, and 96.3% and 99.6% for A/H3. Automated sample extraction facilitated the rapid processing of samples so that the assays allowed accurate, rapid, and cost-effective screening of large numbers of clinical samples.


Journal of Clinical Microbiology | 2005

Comparison of Diagnostic Laboratory Methods for Identification of Burkholderia pseudomallei

Timothy J. J. Inglis; Adam J. Merritt; Glenys Chidlow; Max Aravena-Roman; Gerry Harnett

ABSTRACT Limited experience and a lack of validated diagnostic reagents make Burkholderia pseudomallei, the cause of melioidosis, difficult to recognize in the diagnostic microbiology laboratory. We compared three methods of confirming the identity of presumptive B. pseudomallei strains using a collection of Burkholderia species drawn from diverse geographic, clinical, and environmental sources. The 95 isolates studied included 71 B. pseudomallei and 3 B. thailandensis isolates. The API 20NE method identified only 37% of the B. pseudomallei isolates. The agglutinating antibody test identified 82% at first the attempt and 90% including results of a repeat test with previously negative isolates. Gas-liquid chromatography analysis of bacterial fatty acid methyl esters (GLC-FAME) identified 98% of the B. pseudomallei isolates. The agglutination test produced four false positive results, one B. cepacia, one B. multivorans, and two B. thailandensis. API produced three false positive results, one positive B. cepacia and two positive B. thailandensis. GLC-FAME analysis was positive for one B. cepacia isolate. On the basis of these results, the most robust B. pseudomallei discovery pathway combines the previously recommended isolate screening tests (Gram stain, oxidase test, gentamicin and polymyxin susceptibility) with monoclonal antibody agglutination on primary culture, followed by a repeat after 24 h incubation on agglutination-negative isolates and GLC-FAME analysis. Incorporation of PCR-based identification within this schema may improve percentages of recognition further but requires more detailed evaluation.


PLOS ONE | 2010

Community-Acquired Pneumonia Due to Pandemic A(H1N1)2009 Influenzavirus and Methicillin Resistant Staphylococcus aureus Co-Infection

Ronan Murray; James O. Robinson; Jodi N. White; Frank Hughes; Geoffrey W. Coombs; Julie C. Pearson; Hui-Leen Tan; Glenys Chidlow; Simon Williams; Keryn Christiansen; David W. Smith

Background Bacterial pneumonia is a well described complication of influenza. In recent years, community-onset methicillin-resistant Staphylococcus aureus (cMRSA) infection has emerged as a contributor to morbidity and mortality in patients with influenza. Since the emergence and rapid dissemination of pandemic A(H1N1)2009 influenzavirus in April 2009, initial descriptions of the clinical features of patients hospitalized with pneumonia have contained few details of patients with bacterial co-infection. Methodology/Principal Findings Patients with community–acquired pneumonia (CAP) caused by co-infection with pandemic A(H1N1)2009 influenzavirus and cMRSA were prospectively identified at two tertiary hospitals in one Australian city during July to September 2009, the period of intense influenza activity in our region. Detailed characterization of the cMRSA isolates was performed. 252 patients with pandemic A(H1N1)2009 influenzavirus infection were admitted at the two sites during the period of study. Three cases of CAP due to pandemic A(H1N1)2009/cMRSA co-infection were identified. The clinical features of these patients were typical of those with S. aureus co-infection or sequential infection following influenza. The 3 patients received appropriate empiric therapy for influenza, but inappropriate empiric therapy for cMRSA infection; all 3 survived. In addition, 2 fatal cases of CAP caused by pandemic A(H1N1)2009/cMRSA co-infection were identified on post–mortem examination. The cMRSA infections were caused by three different cMRSA clones, only one of which contained genes for Panton-Valentine Leukocidin (PVL). Conclusions/Significance Clinicians managing patients with pandemic A(H1N1)2009 influenzavirus infection should be alert to the possibility of co-infection or sequential infection with virulent, antimicrobial-resistant bacterial pathogens such as cMRSA. PVL toxin is not necessary for the development of cMRSA pneumonia in the setting of pandemic A( H1N1) 2009 influenzavirus co-infection.


Viruses | 2009

An Economical Tandem Multiplex Real-Time PCR Technique for the Detection of a Comprehensive Range of Respiratory Pathogens

Glenys Chidlow; Gerry Harnett; Geoffrey Shellam; David W. Smith

This study used real-time PCR assays to screen small sample volumes for a comprehensive range of 35 respiratory pathogens. Initial thermocycling was limited to 20 cycles to avoid competition for reagents, followed by a secondary real-time multiplex PCR. Supplementary semi-nested human metapneumovirus and picornavirus PCR assays were required to complete the acute respiratory pathogen profile. Potential pathogens were detected in 85 (70%) of pernasal aspirates collected from 121 children with acute respiratory symptoms. Multiple pathogens were detected in 29 (24%) of those samples. The tandem multiplex real-time PCR was an efficient method for the rapid detection of multiple pathogens.


Revista Do Instituto De Medicina Tropical De Sao Paulo | 2006

PCR-based identification of Burkholderia pseudomallei.

Adam J. Merritt; Timothy J. J. Inglis; Glenys Chidlow; Gerry Harnett

DNA amplification techniques are being used increasingly in clinical laboratories to confirm the identity of medically important bacteria. A PCR-based identification method has been in use in our centre for 10 years for Burkholderia pseudomallei and was used to confirm the identity of bacteria isolated from cases of melioidosis in Ceará since 2003. This particular method has been used as a reference standard for less discriminatory methods. In this study we evaluated three PCR-based methods of B. pseudomallei identification and used DNA sequencing to resolve discrepancies between PCR-based results and phenotypic identification methods. The established semi-nested PCR protocol for B. pseudomallei 16-23s spacer region produced a consistent negative result for one of our 100 test isolates (BCC #99), but correctly identified all 71 other B. pseudomallei isolates tested. Anomalous sequence variation was detected at the inner, reverse primer binding site for this method. PCR methods were developed for detection of two other B. pseudomallei bacterial metabolic genes. The conventional lpxO PCR protocol had a sensitivity of 0.89 and a specificity of 1.00, while a real-time lpxO protocol performed even better with sensitivity and specificity of 1.00, and 1.00. This method identified all B. pseudomallei isolates including the PCR-negative discrepant isolate. The phaC PCR protocol detected the gene in all B. pseudomallei and all but three B. cepacia isolates, making this method unsuitable for PCR-based identification of B. pseudomallei. This experience with PCR-based B. pseudomallei identification methods indicates that single PCR targets should be used with caution for identification of these bacteria, and need to be interpreted alongside phenotypic and alternative molecular methods such as gene sequencing.


Antiviral Research | 2011

A comparison of pyrosequencing and neuraminidase inhibition assays for the detection of oseltamivir-resistant pandemic influenza A(H1N1) 2009 viruses

Yi-Mo Deng; Natalie Caldwell; Aeron C. Hurt; Tim Shaw; Anne Kelso; Glenys Chidlow; Simon Williams; David W. Smith; Ian G. Barr

Currently most pandemic influenza A(H1N1) 2009 (H1N1pdm) viruses are sensitive to oseltamivir, but a single point mutation (H275Y) in the neuraminidase (NA) gene of H1N1pdm can lead to resistance and such viruses have been reported from several countries. In this study we compare the performance of a pyrosequencing-based method for the detection of the H275Y mutation in H1N1pdm viruses with a conventional NA inhibition assay. Pyrosequencing could detect as little as 5% H275Y mutants in a mixed viral population, while mixtures with 25% or greater mutant virus were required before a significant increase in IC50 value could be detected. However, the sensitivity of the NA inhibition assay could be enhanced by using a more sophisticated curve-fitting analysis to generate similar results to the pyrosequencing assay. Of 181 H1N1pdm clinical samples examined by pyrosequencing, nine samples from five patients were found to contain H275Y mutant viruses, four of whom were under oseltamivir treatment. Changes in the ratio of H275Y mutant to wild-type viruses were observed in serial clinical specimens from two patients over the duration of their treatment. This study highlights the need for close monitoring of the H275Y mutation in clinical samples, in particular from severely ill patients infected with H1N1pdm. The use of pyrosequencing and the NA inhibition assay provide powerful tools for the rapid detection and quantitation of resistant influenza viruses in mixed populations.


Journal of Medical Virology | 2011

High detection rates of nucleic acids of a wide range of respiratory viruses in the nasopharynx and the middle ear of children with a history of recurrent acute otitis media

Selma P. Wiertsema; Glenys Chidlow; Lea-Ann S. Kirkham; Karli J. Corscadden; Eva N. Mowe; Shyan Vijayasekaran; Harvey Coates; Gerald B. Harnett; Peter Richmond

Both bacteria and viruses play a role in the development of acute otitis media, however, the importance of specific viruses is unclear. In this study molecular methods were used to determine the presence of nucleic acids of human rhinoviruses (HRV; types A, B, and C), respiratory syncytial viruses (RSV; types A and B), bocavirus (HBoV), adenovirus, enterovirus, coronaviruses (229E, HKU1, NL63, and OC43), influenza viruses (types A, B, and C), parainfluenza viruses (types 1, 2, 3, 4A, and 4B), human metapneumovirus, and polyomaviruses (KI and WU) in the nasopharynx of children between 6 and 36 months of age either with (n = 180) or without (n = 66) a history of recurrent acute otitis media and in 238 middle ear effusion samples collected from 143 children with recurrent acute otitis media. The co‐detection of these viruses with Streptococcus pneumoniae, nontypeable Haemophilus influenzae, and Moraxella catarrhalis was analyzed. HRV (58.3% vs. 42.4%), HBoV (52.2% vs. 19.7%), polyomaviruses (36.1% vs. 15.2%), parainfluenza viruses (29.4% vs. 9.1%), adenovirus (25.0% vs. 6.1%), and RSV (27.8% vs. 9.1%) were detected significantly more often in the nasopharynx of children with a history of recurrent acute otitis media compared to healthy children. HRV was predominant in the middle ear and detected in middle ear effusion of 46% of children. Since respiratory viruses were detected frequently in the nasopharynx of both children with and without a history of recurrent acute otitis media, the etiological role of specific viruses in recurrent acute otitis media remains uncertain, however, anti‐viral therapies may be beneficial in future treatment and prevention strategies for acute otitis media. J. Med. Virol. 83:2008–2017, 2011.


Journal of Virological Methods | 2010

The detection of oseltamivir-resistant pandemic influenza A/H1N1 2009 viruses using a real-time RT-PCR assay.

Glenys Chidlow; Gerald B. Harnett; Simon H. Williams; Simone Tempone; David J. Speers; Aeron C. Hurt; Yi-Mo Deng; David W. Smith

A real-time reverse transcription PCR (rRT-PCR) assay was designed and evaluated for the detection of the point mutation in the influenza A N1 neuraminidase gene that results in a tyrosine to histidine substitution at amino acid position 275 (H275Y) causing resistance to oseltamivir, an antiviral neuraminidase inhibitor. The rRT-PCR assays detected the presence or absence of the H275Y mutation in 387/388 (99.7%) of clinical samples containing the pandemic influenza A/H1N1 2009 virus. The H275Y mutation was not detected in any of the community patient samples (0/132) but was detected in four hospitalized patients who had been treated with oseltamivir for several days. The sensitive rRT-PCR assays may be performed directly on patient specimens, can detect resistant virus at low levels, and therefore may provide early warning of developing resistance within individual patients or the wider population.

Collaboration


Dive into the Glenys Chidlow's collaboration.

Top Co-Authors

Avatar

David W. Smith

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Ingrid A. Laing

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Chisha Sikazwe

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

David William Smith

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Adam J. Merritt

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

David J. Speers

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Deborah Lehmann

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Siew-Kim Khoo

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Timothy J. J. Inglis

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Avram Levy

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge