Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gloria A. Brar is active.

Publication


Featured researches published by Gloria A. Brar.


Cell | 2013

CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes

Luke A. Gilbert; Matthew H. Larson; Leonardo Morsut; Zairan Liu; Gloria A. Brar; Sandra E. Torres; Noam Stern-Ginossar; Onn Brandman; Evan H. Whitehead; Jennifer A. Doudna; Wendell A. Lim; Jonathan S. Weissman; Lei S. Qi

The genetic interrogation and reprogramming of cells requires methods for robust and precise targeting of genes for expression or repression. The CRISPR-associated catalytically inactive dCas9 protein offers a general platform for RNA-guided DNA targeting. Here, we show that fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in human and yeast cells, with the site of delivery determined solely by a coexpressed short guide (sg)RNA. Coupling of dCas9 to a transcriptional repressor domain can robustly silence expression of multiple endogenous genes. RNA-seq analysis indicates that CRISPR interference (CRISPRi)-mediated transcriptional repression is highly specific. Our results establish that the CRISPR system can be used as a modular and flexible DNA-binding platform for the recruitment of proteins to a target DNA sequence, revealing the potential of CRISPRi as a general tool for the precise regulation of gene expression in eukaryotic cells.


Nature Protocols | 2012

The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments

Nicholas T. Ingolia; Gloria A. Brar; Silvia Rouskin; Anna M McGeachy; Jonathan S. Weissman

Recent studies highlight the importance of translational control in determining protein abundance, underscoring the value of measuring gene expression at the level of translation. We present a protocol for genome-wide, quantitative analysis of in vivo translation by deep sequencing. This ribosome profiling approach maps the exact positions of ribosomes on transcripts by nuclease footprinting. The nuclease-protected mRNA fragments are converted into a DNA library suitable for deep sequencing using a strategy that minimizes bias. The abundance of different footprint fragments in deep sequencing data reports on the amount of translation of a gene. In addition, footprints reveal the exact regions of the transcriptome that are translated. To better define translated reading frames, we describe an adaptation that reveals the sites of translation initiation by pretreating cells with harringtonine to immobilize initiating ribosomes. The protocol we describe requires 5–7 days to generate a completed ribosome profiling sequencing library. Sequencing and data analysis require a further 4–5 days.


Science | 2012

High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling

Gloria A. Brar; Moran Yassour; Nir Friedman; Aviv Regev; Nicholas T. Ingolia; Jonathan S. Weissman

Monitoring Meiosis During meiosis, or in yeast sporulation, haploid cells are generated from diploid cells. Brar et al. (p. 552, published online 22 December) performed a detailed analysis of messenger RNA (mRNA) abundance and protein synthesis over the course of sporulation. The production of most proteins was tightly regulated both at the mRNA level and by translational control. An unexpected complexity was observed as the cell passed through this key developmental transition, including increases in noncanonical translation from upstream regions of known RNA transcripts, which appear to be important in translational control. During yeast sporulation, the production of most proteins is tightly regulated by both messenger RNA levels and translational control. Meiosis is a complex developmental process that generates haploid cells from diploid progenitors. We measured messenger RNA (mRNA) abundance and protein production through the yeast meiotic sporulation program and found strong, stage-specific expression for most genes, achieved through control of both mRNA levels and translational efficiency. Monitoring of protein production timing revealed uncharacterized recombination factors and extensive organellar remodeling. Meiotic translation is also shifted toward noncanonical sites, including short open reading frames (ORFs) on unannnotated transcripts and upstream regions of known transcripts (uORFs). Ribosome occupancy at near-cognate uORFs was associated with more efficient ORF translation; by contrast, some AUG uORFs, often exposed by regulated 5′ leader extensions, acted competitively. This work reveals pervasive translational control in meiosis and helps to illuminate the molecular basis of the broad restructuring of meiotic cells.


Nature | 2012

Proto-genes and de novo gene birth

Anne-Ruxandra Carvunis; Thomas Rolland; Ilan Wapinski; Michael A. Calderwood; Muhammed A. Yildirim; Nicolas Simonis; Benoit Charloteaux; César A. Hidalgo; Justin Barbette; Balaji Santhanam; Gloria A. Brar; Jonathan S. Weissman; Aviv Regev; Nicolas Thierry-Mieg; Michael E. Cusick; Marc Vidal

Novel protein-coding genes can arise either through re-organization of pre-existing genes or de novo. Processes involving re-organization of pre-existing genes, notably after gene duplication, have been extensively described. In contrast, de novo gene birth remains poorly understood, mainly because translation of sequences devoid of genes, or ‘non-genic’ sequences, is expected to produce insignificant polypeptides rather than proteins with specific biological functions. Here we formalize an evolutionary model according to which functional genes evolve de novo through transitory proto-genes generated by widespread translational activity in non-genic sequences. Testing this model at the genome scale in Saccharomyces cerevisiae, we detect translation of hundreds of short species-specific open reading frames (ORFs) located in non-genic sequences. These translation events seem to provide adaptive potential, as suggested by their differential regulation upon stress and by signatures of retention by natural selection. In line with our model, we establish that S. cerevisiae ORFs can be placed within an evolutionary continuum ranging from non-genic sequences to genes. We identify ∼1,900 candidate proto-genes among S. cerevisiae ORFs and find that de novo gene birth from such a reservoir may be more prevalent than sporadic gene duplication. Our work illustrates that evolution exploits seemingly dispensable sequences to generate adaptive functional innovation.


Nature Reviews Genetics | 2008

Emerging roles for centromeres in meiosis I chromosome segregation

Gloria A. Brar; Angelika Amon

Centromeres are an essential and conserved feature of eukaryotic chromosomes, yet recent research indicates that we are just beginning to understand the numerous roles that centromeres have in chromosome segregation. During meiosis I, in particular, centromeres seem to function in many processes in addition to their canonical role in assembling kinetochores, the sites of microtubule attachment. Here we summarize recent advances that place centromeres at the centre of meiosis I, and discuss how these studies affect a variety of basic research fields and thus hold promise for increasing our understanding of human reproductive defects and disease states.


Cell | 2005

The FK506 Binding Protein Fpr3 Counteracts Protein Phosphatase 1 to Maintain Meiotic Recombination Checkpoint Activity

Andreas Hochwagen; Wai-Hong Tham; Gloria A. Brar; Angelika Amon

The meiotic recombination checkpoint delays gamete precursors in G2 until DNA breaks created during recombination are repaired and chromosome structure has been restored. Here, we show that the FK506 binding protein Fpr3 prevents premature adaptation to damage and thus serves to maintain recombination checkpoint activity. Impaired checkpoint function is observed both in cells lacking FPR3 and in cells treated with rapamycin, a small molecule inhibitor that binds to the proline isomerase (PPIase) domain of Fpr3. FPR3 functions in the checkpoint through controlling protein phosphatase 1 (PP1). Fpr3 interacts with PP1 through its PPIase domain, regulates PP1 localization, and counteracts the activity of PP1 in vivo. Our findings define a branch of the recombination checkpoint involved in the adaptation to persistent chromosomal damage and a critical function for FK506 binding proteins during meiosis.


Nature | 2006

Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis

Gloria A. Brar; Brendan M. Kiburz; Yi Zhang; Jieun Kim; Forest M. White; Angelika Amon

During meiosis, cohesins—protein complexes that hold sister chromatids together—are lost from chromosomes in a step-wise manner. Loss of cohesins from chromosome arms is necessary for homologous chromosomes to segregate during meiosis I. Retention of cohesins around centromeres until meiosis II is required for the accurate segregation of sister chromatids. Here we show that phosphorylation of the cohesin subunit Rec8 contributes to step-wise cohesin removal. Our data further implicate two other key regulators of meiotic chromosome segregation, the cohesin protector Sgo1 and meiotic recombination in bringing about the step-wise loss of cohesins and thus the establishment of the meiotic chromosome segregation pattern. Understanding the interplay between these processes should provide insight into the events underlying meiotic chromosome mis-segregation, the leading cause of miscarriages and mental retardation in humans.


Nature Reviews Molecular Cell Biology | 2015

Ribosome profiling reveals the what, when, where and how of protein synthesis

Gloria A. Brar; Jonathan S. Weissman

Ribosome profiling, which involves the deep sequencing of ribosome-protected mRNA fragments, is a powerful tool for globally monitoring translation in vivo. The method has facilitated discovery of the regulation of gene expression underlying diverse and complex biological processes, of important aspects of the mechanism of protein synthesis, and even of new proteins, by providing a systematic approach for experimental annotation of coding regions. Here, we introduce the methodology of ribosome profiling and discuss examples in which this approach has been a key factor in guiding biological discovery, including its prominent role in identifying thousands of novel translated short open reading frames and alternative translation products.


Molecular Biology of the Cell | 2008

The Multiple Roles of Cohesin in Meiotic Chromosome Morphogenesis and Pairing

Gloria A. Brar; Andreas Hochwagen; Ly Sha S Ee; Angelika Amon

Sister chromatid cohesion, mediated by cohesin complexes, is laid down during DNA replication and is essential for the accurate segregation of chromosomes. Previous studies indicated that, in addition to their cohesion function, cohesins are essential for completion of recombination, pairing, meiotic chromosome axis formation, and assembly of the synaptonemal complex (SC). Using mutants in the cohesin subunit Rec8, in which phosphorylated residues were mutated to alanines, we show that cohesin phosphorylation is not only important for cohesin removal, but that cohesins meiotic prophase functions are distinct from each other. We find pairing and SC formation to be dependent on Rec8, but independent of the presence of a sister chromatid and hence sister chromatid cohesion. We identified mutations in REC8 that differentially affect Rec8s cohesion, pairing, recombination, chromosome axis and SC assembly function. These findings define Rec8 as a key determinant of meiotic chromosome morphogenesis and a central player in multiple meiotic events.


eLife | 2012

Meiosis I chromosome segregation is established through regulation of microtubule–kinetochore interactions

Matthew Miller; Elçin Ünal; Gloria A. Brar; Angelika Amon

During meiosis, a single round of DNA replication is followed by two consecutive rounds of nuclear divisions called meiosis I and meiosis II. In meiosis I, homologous chromosomes segregate, while sister chromatids remain together. Determining how this unusual chromosome segregation behavior is established is central to understanding germ cell development. Here we show that preventing microtubule–kinetochore interactions during premeiotic S phase and prophase I is essential for establishing the meiosis I chromosome segregation pattern. Premature interactions of kinetochores with microtubules transform meiosis I into a mitosis-like division by disrupting two key meiosis I events: coorientation of sister kinetochores and protection of centromeric cohesin removal from chromosomes. Furthermore we find that restricting outer kinetochore assembly contributes to preventing premature engagement of microtubules with kinetochores. We propose that inhibition of microtubule–kinetochore interactions during premeiotic S phase and prophase I is central to establishing the unique meiosis I chromosome segregation pattern. DOI: http://dx.doi.org/10.7554/eLife.00117.001

Collaboration


Dive into the Gloria A. Brar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angelika Amon

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aviv Regev

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

César A. Hidalgo

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Forest M. White

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge