Gloria Gallego Ferrer
Polytechnic University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gloria Gallego Ferrer.
Small | 2014
Ana I. Neto; Ana Cibrão; Clara R. Correia; Rita R. Carvalho; Gisela M. Luz; Gloria Gallego Ferrer; Gabriela Botelho; Catherine Picart; Natália M. Alves; João F. Mano
In a marine environment, specific proteins are secreted by mussels and used as a bioglue to stick to a surface. These mussel proteins present an unusual amino acid 3,4-dihydroxyphenylalanine (known as DOPA). The outstanding adhesive properties of these materials in the sea harsh conditions have been attributed to the presence of the catechol groups present in DOPA. Inspired by the structure and composition of these adhesive proteins, dopamine-modified hyaluronic acid (HA-DN) prepared by carbodiimide chemistry is used to form thin and surface-adherent dopamine films. This conjugate was characterized by distinct techniques, such as nuclear magnetic resonance and ultraviolet spectrophotometry. Multilayer films are developed based on chitosan and HA-DN to form polymeric coatings using the layer-by-layer methodology. The nanostructured films formation is monitored by quartz crystal microbalance. The film surface is characterized by atomic force microscopy and scanning electron microscopy. Water contact angle measurements are also conducted. The adhesion properties are analyzed showing that the nanostructured films with dopamine promote an improved adhesion. In vitro tests show an enhanced cell adhesion, proliferation and viability for the biomimetic films with catechol groups, demonstrating their potential to be used in distinct biomedical applications.
Journal of Chemical Physics | 2004
Manuel Monleón Pradas; Manuel Salmerón Sánchez; Gloria Gallego Ferrer; José Luis Gómez Ribelles
The multilayer adsorption models of Brunauer-Emmett-Teller and Guggenheim-Anderson-de Boer are reconsidered. The relationship between the fitting parameters and the physical parameters of the equation is discussed. The preexponential factors of the parameters are shown to be in general far different from unity, contrary to a widespread use. A thermodynamical derivation illuminates the hypothesis on which the multilayer sorption equation is dependent and frees it from too restrictive hypothesis usually taken as necessary for its validity. Equations are derived for the number fraction of sorption sites occupied by different numbers of molecules. The Guggenheim-Anderson-de Boer equation is shown to imply incomplete occupation (jamming) of the first sorption layer at saturation.
Materials Science and Engineering: C | 2014
Dajana Milovac; Gloria Gallego Ferrer; Marica Ivanković; Hrvoje Ivanković
In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200°C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hanks balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88MPa) and the elastic modulus (15.5MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications.
Journal of Non-crystalline Solids | 1998
Gloria Gallego Ferrer; Manuel Monleón Pradas; José Luis Gómez Ribelles; Polykarpos Pissis
Polymer hydrogels have been prepared whose hydrophilicity is determined by the relative amounts of the component polymers, in the form of interpenetrating networks of a hydrophobic and a hydrophilic constituent. Equilibrium water contents, diffusivity of water and water sorption isotherms have been measured as a function of xerogel composition. Thermally stimulated current spectra have been measured for each xerogel composition at a series of different hydrogel water contents, and the effects of water on the relaxations of the polymer have been studied. The set of results suggests that the interpenetrating polymer networks (IPNS) are phase-separated systems with hydrophilic domains behaving essentially as does the pure hydrophilic component polymer.
Materials Science and Engineering: C | 2014
Dajana Milovac; Tatiana C. Gamboa-Martínez; Marica Ivanković; Gloria Gallego Ferrer; Hrvoje Ivanković
In the present study, we examined the potential of using highly porous poly(ε-caprolactone) (PCL)-coated hydroxyapatite (HAp) scaffold derived from cuttlefish bone for bone tissue engineering applications. The cell culture studies were performed in vitro with preosteoblastic MC3T3-E1 cells in static culture conditions. Comparisons were made with uncoated HAp scaffold. The attachment and spreading of preosteoblasts on scaffolds were observed by Live/Dead staining Kit. The cells grown on the HAp/PCL composite scaffold exhibited greater spreading than cells grown on the HAp scaffold. DNA quantification and scanning electron microscopy (SEM) confirmed a good proliferation of cells on the scaffolds. DNA content on the HAp/PCL scaffold was significantly higher compared to porous HAp scaffolds. The amount of collagen synthesis was determined using a hydroxyproline assay. The osteoblastic differentiation of the cells was evaluated by determining alkaline phosphatase (ALP) activity and collagen type I secretion. Furthermore, cell spreading and cell proliferation within scaffolds were observed using a fluorescence microscope.
Journal of Materials Science | 2005
Raúl Brígido Diego; M. P. Olmedilla; A. S. Aroca; José Luis Gómez Ribelles; M. Monleón Pradas; Gloria Gallego Ferrer; Manuel Salmerón Sánchez
Polymer scaffolds are obtained in which the geometric characteristics (pore size, connectivity, porosity) and the physico-chemical properties of the resulting material can be controlled in an independent way. The interconnected porous structure was obtained using a template of sintered PMMA microspheres of controlled size. Copolymerization of hydrophobic ethyl acrylate and hydrophilic hydroxyethyl methacrylate comonomers took place in the free space of the template, different comonomer ratio gave rise to different hydrophilicity degrees of the material keeping the same pore architecture. The morphology of the resulting scaffolds was investigated by scanning electron microscopy (SEM), the porosity of the material calculated, and the mechanical properties compared with those of the bulk (non porous) material of the same composition.
Journal of Biomedical Materials Research Part A | 2015
Jorge L. Alió del Barrio; Massimo Chiesa; Gloria Gallego Ferrer; Nerea Garagorri; Nerea Briz; Jorge Fernández-Delgado; Maria Sancho-Tello Valls; Carmen Carda Botella; Ignacio García-Tuñón; Laurent Bataille; Alejandra E. Rodriguez; Francisco Arnalich-Montiel; José Luis Gómez Ribelles; Carmen M. Antolinos-Turpín; José A. Gómez-Tejedor; Jorge L. Alió; Maria P. De Miguel
Currently available keratoprosthesis models (nonbiological corneal substitutes) have a less than 75% graft survival rate at 2 years. We aimed at developing a model for keratoprosthesis based on the use of poly(ethyl acrylate) (PEA)-based copolymers, extracellular matrix-protein coating and colonization with adipose-derived mesenchymal stem cells. Human adipose tissue derived mesenchymal stem cells (h-ADASC) colonization efficiency of seven PEA-based copolymers in combination with four extracellular matrix coatings were evaluated in vitro. Then, macroporous membranes composed of the optimal PEA subtypes and coating proteins were implanted inside rabbit cornea. After a 3-month follow-up, the animals were euthanized, and the clinical and histological biointegration of the implanted material were assessed. h-ADASC adhered and survived when cultured in all PEA-based macroporous membranes. The addition of high hydrophilicity to PEA membranes decreased h-ADASC colonization in vitro. PEA-based copolymer containing 10% hydroxyethyl acrylate (PEA-HEA10) or 10% acrylic acid (PEA-AAc10) monomeric units showed the best cellular colonization rates. Collagen plus keratan sulfate-coated polymers demonstrated enhanced cellular colonization respect to fibronectin, collagen, or uncoated PEAs. In vivo implantation of membranes resulted in an extrusion rate of 72% for PEA, 50% for PEA-AAc10, but remarkably of 0% for PEA-HEA10. h-ADASC survival was demonstrated in all the membranes after 3 months follow-up. A slight reduction in the extrusion rate of h-ADASC colonized materials was observed. No significant differences between the groups with and without h-ADASC were detected respect to transparency or neovascularization. We propose PEA with low hydroxylation as a scaffold for the anchoring ring of future keratoprosthesis.
Annals of Biomedical Engineering | 2016
Anamarija Rogina; Patricia Rico; Gloria Gallego Ferrer; Marica Ivanković; Hrvoje Ivanković
Highly porous chitosan/hydroxyapatite composite structures with different weight ratios (100/0; 90/10; 80/20; 70/30; 60/40; 50/50; 40/60) have been prepared by precipitation method and freeze-gelation technique using calcite, urea phosphate and chitosan as starting materials. The composition of prepared composite scaffolds was characterized by X-ray diffraction analysis and Fourier transformed infrared spectroscopy, while morphology of scaffolds was imaged by scanning electron microscopy. Mercury intrusion porosimetry measurements of prepared scaffolds have shown different porosity and microstructure regarding to the HA content, along with SEM observations of scaffolds after being immersed in physiological medium. The results of swelling capacity and compressive strength measured in Dulbecco’s phosphate buffer saline (DPBS) have shown higher values for composite scaffolds with lower in situ HA content. Viability, proliferation and differentiation of MC3T3-E1 cells seeded on different scaffolds have been evaluated by live dead assay and confocal scan microscopy. Our results suggest that the increase of HA content enhance osteoblast differentiation confirming osteogenic properties of highly porous CS/HA scaffolds for tissue engineering applications in bone repair.
Computer Methods and Programs in Biomedicine | 2014
Sara Manzano; Sara Poveda-Reyes; Gloria Gallego Ferrer; Ignacio Ochoa; Mohamed Hamdy Doweidar
Interpenetrated polymer networks (IPNs), composed by two independent polymeric networks that spatially interpenetrate, are considered as valuable systems to control permeability and mechanical properties of hydrogels for biomedical applications. Specifically, poly(ethyl acrylate) (PEA)-poly(2-hydroxyethyl acrylate) (PHEA) IPNs have been explored as good hydrogels for mimicking articular cartilage. These lattices are proposed as matrix implants in cartilage damaged areas to avoid the discontinuity in flow uptake preventing its deterioration. The permeability of these implants is a key parameter that influences their success, by affecting oxygen and nutrient transport and removing cellular waste products to healthy cartilage. Experimental try-and-error approaches are mostly used to optimize the composition of such structures. However, computational simulation may offer a more exhaustive tool to test and screen out biomaterials mimicking cartilage, avoiding expensive and time-consuming experimental tests. An accurate and efficient prediction of materials permeability and internal directionality and magnitude of the fluid flow could be highly useful when optimizing biomaterials design processes. Here we present a 3D computational model based on Sussman-Bathe hyperelastic material behaviour. A fluid structure analysis is performed with ADINA software, considering these materials as two phases composites where the solid part is saturated by the fluid. The model is able to simulate the behaviour of three non-biodegradable hydrogel compositions, where percentages of PEA and PHEA are varied. Specifically, the aim of this study is (i) to verify the validity of the Sussman-Bathe material model to simulate the response of the PEA-PHEA biomaterials; (ii) to predict the fluid flux and the permeability of the proposed IPN hydrogels and (iii) to study the material domains where the passage of nutrients and cellular waste products is reduced leading to an inadequate flux distribution in healthy cartilage tissue. The obtained results show how the model predicts the permeability of the PEA-PHEA hydrogels and simulates the internal behaviour of the samples and shows the distribution and quantification of fluid flux.
Macromolecular Bioscience | 2016
Sara Poveda-Reyes; Vladimíra Moulisová; Esther Sanmartín-Masiá; Luis Quintanilla-Sierra; Manuel Salmerón-Sánchez; Gloria Gallego Ferrer
Cells interact mechanically with their environment, exerting mechanical forces that probe the extracellular matrix (ECM). The mechanical properties of the ECM determine cell behavior and control cell differentiation both in 2D and 3D environments. Gelatin (Gel) is a soft hydrogel into which cells can be embedded. This study shows significant 3D Gel shrinking due to the high traction cellular forces exerted by the cells on the matrix, which prevents cell differentiation. To modulate this process, Gel with hyaluronic acid (HA) has been combined in an injectable crosslinked hydrogel with controlled Gel-HA ratio. HA increases matrix stiffness. The addition of small amounts of HA leads to a significant reduction in hydrogel shrinking after cell encapsulation (C2C12 myoblasts). We show that hydrogel stiffness counterbalanced traction forces of cells and this was decisive in promoting cell differentiation and myotube formation of C2C12 encapsulated in the hybrid hydrogels.