Gloria Levicán
University of Santiago, Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gloria Levicán.
BMC Genomics | 2008
Gloria Levicán; Juan A. Ugalde; Nicole Ehrenfeld; Alejandro Maass; Pilar Parada
BackgroundCarbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments.ResultsIn this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air.ConclusionThe current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms.
Journal of Bacteriology | 2002
Gloria Levicán; Patrice Bruscella; Maritza Guacunano; Carolina Inostroza; Violaine Bonnefoy; David S. Holmes; Eugenia Jedlicki
DNA sequence analysis and bioinformatic interpretations have identified two adjacent clusters of genes potentially involved in the formation of a bc1 complex and in the maturation of a cytochrome c-type protein in two strains (ATCC 19859 and ATCC 33020) of the acidophilic, chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans (formerly Thiobacillus ferrooxidans). Reverse transcriptase-PCR experiments suggest that the two clusters are organized as operons, and +1 start sites of transcription for the operons have been determined by primer extension experiments. Potential promoters have been identified. The presence of these operons lends support to a recent model of reverse electron flow and is consistent with previous reports of phenotypic switching in this bacterium.
Applied Microbiology and Biotechnology | 2011
Roberto A. Bobadilla Fazzini; Gloria Levicán; Pilar Parada
The nature of the mineral–bacteria interphase where electron and mass transfer processes occur is a key element of the bioleaching processes of sulfide minerals. This interphase is composed of proteins, metabolites, and other compounds embedded in extracellular polymeric substances mainly consisting of sugars and lipids (Gehrke et al., Appl Environ Microbiol 64(7):2743–2747, 1998). On this respect, despite Acidithiobacilli—a ubiquitous bacterial genera in bioleaching processes (Rawlings, Microb Cell Fact 4(1):13, 2005)—has long been recognized as secreting bacteria (Jones and Starkey, J Bacteriol 82:788–789, 1961; Schaeffer and Umbreit, J Bacteriol 85:492–493, 1963), few studies have been carried out in order to clarify the nature and the role of the secreted protein component: the secretome. This work characterizes for the first time the sulfur (meta)secretome of Acidithiobacillus thiooxidans strain DSM 17318 in pure and mixed cultures with Acidithiobacillus ferrooxidans DSM 16786, identifying the major component of these secreted fractions as a single lipoprotein named here as Licanantase. Bioleaching assays with the addition of Licanantase-enriched concentrated secretome fractions show that this newly found lipoprotein as an active protein additive exerts an increasing effect on chalcopyrite bioleaching rate.
World Journal of Microbiology & Biotechnology | 2013
Inmaculada Vaca; Carolina Faúndez; Felipe Maza; Braulio Paillavil; Valentina Hernández; Fermín Acosta; Gloria Levicán; Claudio Martínez; Renato Chávez
Unlike filamentous fungi and bacteria, very little is known about cultivable yeasts associated with marine sponges, especially those from Antarctic seas. During an expedition to King George Island, in the Antarctica, samples of 11 marine sponges were collected by scuba-diving. From these sponges, 20 psychrotolerant yeast isolates were obtained. Phylogenetic analyses of D1/D2 and ITS rRNA gene sequences revealed that the marine ascomycetous yeast Metschnikowia australis is the predominant organism associated with these invertebrates. Other species found belonged to the Basidiomycota phylum: Cystofilobasidium infirmominiatum, Rhodotorula pinicola, Leucosporidiella creatinivora and a new yeast from the Leucosporidiella genus. None of these yeasts have been previously associated with marine sponges. A screening to estimate the ability of these yeasts as producers of extracellular enzymatic activities at several pH and temperature conditions was performed. Several yeast isolates demonstrated amylolytic, proteolytic, lipolytic or cellulolytic activity, but none of them showed xylanolytic activity under the conditions assayed. To our knowledge, this work is the first description of cultivable yeasts associated with marine sponges from the Antarctic sea.
Journal of Bacteriology | 2001
David S. Holmes; Hui-Ling Zhao; Gloria Levicán; Jeanine Ratouchniak; Violaine Bonnefoy; Patricia Varela; Eugenia Jedlicki
A 1.3-kb insertion sequence, termed ISAfe1 (U66426), from Acidithiobacillus ferrooxidans ATCC 19859 is described. ISAfe1 exhibits the features of a typical bacterial insertion sequence. It has 26-bp, imperfectly matched, terminal inverted repeats and an open reading frame (ORF) that potentially encodes a transposase (TPase) of 404 amino acids (AAB07489) with significant similarity to members of the ISL3 family of insertion sequences. A potential ribosome-binding site and potential -10 and -35 promoter sites for the TPase ORF were identified, and a +1 transcriptional start site was detected experimentally. A potential outwardly directed -35 site was identified in the right inverted repeat of ISAfe1. A second ORF (ORF B), of unknown function, was found on the complementary strand with significant similarity to ORF 2 of ISAe1 from Ralstonia eutropha. Southern blot analyses demonstrated that ISAfe1-like elements can be found in multiple copies in a variety of A. ferrooxidans strains and that they exhibit transposition. A codon adaptation index (CAI) analysis of the TPase of ISAfe1 indicates that is has a CAI of 0.726 and can be considered well adapted to its host, suggesting that ISAfe1 might be an ancient resident of A. ferrooxidans. Analysis of six of its target sites of insertion in the genome of A. ferrooxidans ATCC 19859 indicates a preference for 8-bp pseudopalindromic sequences, one of which resembles the termini of its inverted repeats. Evidence is presented here that is consistent with the possibility that ISAfe1 can promote both plasmid cointegrate formation and resolution in E. coli.
Journal of Molecular Microbiology and Biotechnology | 2012
Paula Bustamante; Paulo C. Covarrubias; Gloria Levicán; Assaf Katz; Pablo Tapia; David S. Holmes; Raquel Quatrini; Omar Orellana
Integrative conjugative elements (ICEs) are self-transferred mobile genetic elements that contribute to horizontal gene transfer. An ICE (ICEAfe1) was identified in the genome of Acidithiobacillus ferrooxidans ATCC 23270. Excision of the element and expression of relevant genes under normal and DNA-damaging growth conditions was analyzed. Bioinformatic tools and DNA amplification methods were used to identify and to assess the excision and expression of genes related to the mobility of the element. Both basal and mitomycin C-inducible excision as well as expression and induction of the genes for integration/excision are demonstrated, suggesting that ICEAfe1 is an actively excising SOS-regulated mobile genetic element. The presence of a complete set of genes encoding self-transfer functions that are induced in response to DNA damage caused by mitomycin C additionally suggests that this element is capable of conjugative transfer to suitable recipient strains. Transfer of ICEAfe1 may provide selective advantages to other acidophiles in this ecological niche through dissemination of gene clusters expressing transfer RNAs, CRISPRs, and exopolysaccharide biosynthesis enzymes, probably by modification of translation efficiency, resistance to bacteriophage infection and biofilm formation, respectively. These data open novel avenues of research on conjugative transformation of biotechnologically relevant microorganisms recalcitrant to genetic manipulation.
PLOS ONE | 2016
Abdiel Del-Cid; Carlos Gil-Durán; Inmaculada Vaca; Juan F. Rojas-Aedo; Ramón O. García-Rico; Gloria Levicán; Renato Chávez
The filamentous fungus Penicillium roqueforti is widely known as the ripening agent of blue-veined cheeses. Additionally, this fungus is able to produce several secondary metabolites, including the meroterpenoid compound mycophenolic acid (MPA). Cheeses ripened with P. roqueforti are usually contaminated with MPA. On the other hand, MPA is a commercially valuable immunosuppressant. However, to date the molecular basis of the production of MPA by P. roqueforti is still unknown. Using a bioinformatic approach, we have identified a genomic region of approximately 24.4 kbp containing a seven-gene cluster that may be involved in the MPA biosynthesis in P. roqueforti. Gene silencing of each of these seven genes (named mpaA, mpaB, mpaC, mpaDE, mpaF, mpaG and mpaH) resulted in dramatic reductions in MPA production, confirming that all of these genes are involved in the biosynthesis of the compound. Interestingly, the mpaF gene, originally described in P. brevicompactum as a MPA self-resistance gene, also exerts the same function in P. roqueforti, suggesting that this gene has a dual function in MPA metabolism. The knowledge of the biosynthetic pathway of MPA in P. roqueforti will be important for the future control of MPA contamination in cheeses and the improvement of MPA production for commercial purposes.
PLOS ONE | 2015
Carlos Gil-Durán; Juan F. Rojas-Aedo; Exequiel Medina; Inmaculada Vaca; Ramón O. García-Rico; Sebastián Villagrán; Gloria Levicán; Renato Chávez
Proteins containing Zn(II)2Cys6 domains are exclusively found in fungi and yeasts. Genes encoding this class of proteins are broadly distributed in fungi, but few of them have been functionally characterized. In this work, we have characterized a gene from the filamentous fungus Penicillium roqueforti that encodes a Zn(II)2Cys6 protein, whose function to date remains unknown. We have named this gene pcz1. We showed that the expression of pcz1 is negatively regulated in a P. roqueforti strain containing a dominant active Gαi protein, suggesting that pcz1 encodes a downstream effector that is negatively controlled by Gαi. More interestingly, the silencing of pcz1 in P. roqueforti using RNAi-silencing technology resulted in decreased apical growth, the promotion of conidial germination (even in the absence of a carbon source), and the strong repression of conidiation, concomitant with the downregulation of the genes of the central conidiation pathway brlA, abaA and wetA. A model for the participation of pcz1 in these physiological processes in P. roqueforti is proposed.
Advanced Materials Research | 2009
Gloria Levicán; Assaf Katz; Jorge Valdés; Raquel Quatrini; David S. Holmes; Omar Orellana
The genome sequences from two strains of the acidophilic, autotrophic, chemolithotrophic proteobacterium A. ferrooxidans are available from genome databases. Bioinformatic sequence comparison revealed the existence in one strain of a putative integrative conjugative element (ICE), containing an entire set of clustered tRNA genes. ICE is missing in the other strain, suggesting that this element as well as the tRNA genes cluster is dispensable for the bacterium. Bioinformatic predictions suggest that the tRNA genes cluster might mainly contribute to the translation of ICE encoded genes.
Frontiers in Microbiology | 2017
Juan F. Rojas-Aedo; Carlos Gil-Durán; Abdiel Del-Cid; Natalia Valdés; Pamela Álamos; Inmaculada Vaca; Ramón O. García-Rico; Gloria Levicán; Mario Tello; Renato Chávez
Penicillium roqueforti is a filamentous fungus involved in the ripening of several kinds of blue cheeses. In addition, this fungus produces several secondary metabolites, including the meroterpenoid compound andrastin A, a promising antitumoral compound. However, to date the genomic cluster responsible for the biosynthesis of this compound in P. roqueforti has not been described. In this work, we have sequenced and annotated a genomic region of approximately 29.4 kbp (named the adr gene cluster) that is involved in the biosynthesis of andrastin A in P. roqueforti. This region contains ten genes, named adrA, adrC, adrD, adrE, adrF, adrG, adrH, adrI, adrJ and adrK. Interestingly, the adrB gene previously found in the adr cluster from P. chrysogenum, was found as a residual pseudogene in the adr cluster from P. roqueforti. RNA-mediated gene silencing of each of the ten genes resulted in significant reductions in andrastin A production, confirming that all of them are involved in the biosynthesis of this compound. Of particular interest was the adrC gene, encoding for a major facilitator superfamily transporter. According to our results, this gene is required for the production of andrastin A but does not have any role in its secretion to the extracellular medium. The identification of the adr cluster in P. roqueforti will be important to understand the molecular basis of the production of andrastin A, and for the obtainment of strains of P. roqueforti overproducing andrastin A that might be of interest for the cheese industry.