Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gloria Matthews is active.

Publication


Featured researches published by Gloria Matthews.


Expert Opinion on Emerging Drugs | 2011

Emerging drugs for osteoarthritis

Gloria Matthews; David J. Hunter

Introduction: Osteoarthritis (OA), the most prevalent form of joint disease, affects as much as 13% of the worlds population. In the USA, it is the leading cause of disability in people over age 65 and is characterized by progressive cartilage loss, bone remodeling, osteophyte formation and synovial inflammation with resultant joint pain and disability. There are no treatments marketed for structural disease modification; current treatments mainly target symptoms, with > 75% of patients reporting need for additional symptomatic treatment. Areas covered: Drugs in later development (Phase II – III) for OA pain and joint structural degeneration are reviewed. Topics that are not covered in this article are procedural-based (e.g., arthrocentesis, physical therapy), behavioral-based (e.g., weight loss, pain coping techniques) or device-based (e.g., knee braces, surgical implants) treatments. Expert opinion: More in-depth understanding of the pathophysiology of the disease, as well as elucidation of the link between clinical symptomatology and structural changes in the joint will likely lead to the development of novel target classes with promising efficacy in the future. Efficacy notwithstanding, there remain significant hurdles to overcome in clinical development of these therapeutics, inherent in the progression pattern of the disease as well as challenges with readouts for both pain and structure modification trials.


Journal of Orthopaedic Research | 2011

Autologous chondrocyte implantation drives early chondrogenesis and organized repair in extensive full- and partial-thickness cartilage defects in an equine model

Alan J. Nixon; Laila Begum; Hussni O. Mohammed; Barbara A. Huibregtse; Michael O'Callaghan; Gloria Matthews

Autologous chondrocyte implantation (ACI) has been used clinically for over 15 years and yet definitive evidence of chondrocyte persistence and direct impact on cartilage repair in full‐thickness lesions is scant and no data are available on ACI in partial‐thickness defects in any animal model. This study assessed the effect of chondrocytes secured using periosteal overlay in partial‐ and full‐thickness cartilage defects in the equine model. Paired cartilage defects 15 mm in diameter were made in the patellofemoral joint of 16 horse and repaired with ACI or periosteal flap alone. Response was assessed at 8 weeks by clinical, microradiographic, and histologic appearance, and by collagen type II immunohistochemistry, and proteoglycan and DNA quantification. ACI improved histologic scores in partial‐ and full‐thickness cartilage defects, including defect filling, attachment to the underlying subchondral bone, and presence of residual chondrocyte accumulations. For partial‐thickness defects chondrocyte predominance, collagen type II content, and toluidine stained matrix were enhanced, and attachment to the surrounding cartilage improved. DNA and PG content of grafted partial‐thickness defects was improved by chondrocyte implantation. Periosteal patches alone did not induce cartilage repair. This study indicated implantation of chondrocytes to cartilage defects improved healing with a combination of persisting chondrocyte regions, enhanced collagen type II formation, and better overall cartilage healing scores. Use of ACI in the more challenging partial‐thickness defects also improved histologic indices and biochemical content. The equine model of cartilage healing closely resembles cartilage repair in man, and results of this study confirm cell persistence and improved early cartilage healing events after ACI.


Journal of Biomechanics | 2015

Mechanical characterization of matrix-induced autologous chondrocyte implantation (MACI®) grafts in an equine model at 53 weeks

Darvin J. Griffin; Edward D. Bonnevie; Devin J. Lachowsky; James Hart; Holly D. Sparks; N. Moran; Gloria Matthews; Alan J. Nixon; Itai Cohen; Lawrence J. Bonassar

There has been much interest in using autologous chondrocytes in combination with scaffold materials to aid in cartilage repair. In the present study, a total of 27 animals were used to compare the performance of matrix-assisted chondrocyte implantation (MACI®) using a collagen sponge as a chondrocyte delivery vehicle, the sponge membrane alone, and empty controls. A total of three distinct types of mechanical analyses were performed on repaired cartilage harvested from horses after 53 weeks of implantation: (1) compressive behavior of samples to measure aggregate modulus (HA) and hydraulic permeability (k) in confined compression; (2) local and global shear modulus using confocal strain mapping; and (3) boundary friction coefficient using a custom-built tribometer. Cartilage defects receiving MACI® implants had equilibrium modulus values that were 70% of normal cartilage, and were not statistically different than normal tissue. Defects filled with Maix™ membrane alone or left empty were only 46% and 51-63% of control, respectively. The shear modulus of tissue from all groups of cartilage defects were between 4 and 10 times lower than control tissue, and range from 0.2 to 0.4 MPa. The average values of boundary mode friction coefficients of control tissue from all groups ranged from 0.42 to 0.52. This study represents an extensive characterization of the mechanical performance of the MACI® grafts implant in a large animal model at 53 weeks. Collectively, these data demonstrate a range of implant performance, revealing similar compressive and frictional properties to native tissue, with inferior shear properties.


Osteoarthritis and Cartilage | 2015

A chondrocyte infiltrated collagen type I/III membrane (MACI® implant) improves cartilage healing in the equine patellofemoral joint model.

Alan J. Nixon; E. Rickey; T.J. Butler; Michael S. Scimeca; N. Moran; Gloria Matthews

UNLABELLED Autologous chondrocyte implantation (ACI) has improved outcome in long-term studies of joint repair in man. However, ACI requires sutured periosteal flaps to secure the cells, which precludes minimally-invasive implantation, and introduces complications with arthrofibrosis and graft hypertrophy. This study evaluated ACI on a collagen type I/III scaffold (matrix-induced autologous chondrocyte implantation; MACI(®)) in critical sized defects in the equine model. METHODS Chondrocytes were isolated from horses, expanded and seeded onto a collagen I/III membrane (ACI-Maix™) and implanted into one of two 15-mm defects in the femoral trochlear ridge of six horses. Control defects remained empty as ungrafted debrided defects. The animals were examined daily, scored by second look arthroscopy at 12 weeks, and necropsy examination 6 months after implantation. Reaction to the implant was determined by lameness, and synovial fluid constituents and synovial membrane histology. Cartilage healing was assessed by arthroscopic scores, gross assessment, repair tissue histology and immunohistochemistry, cartilage glycosaminoglycan (GAG) and DNA assay, and mechanical testing. RESULTS MACI(®) implanted defects had improved arthroscopic second-look, gross healing, and composite histologic scores, compared to spontaneously healing empty defects. Cartilage GAG and DNA content in the defects repaired by MACI implant were significantly improved compared to controls. Mechanical properties were improved but remained inferior to normal cartilage. There was minimal evidence of reaction to the implant in the synovial fluid, synovial membrane, subchondral bone, or cartilage. CONCLUSIONS The MACI(®) implant appeared to improve cartilage healing in a critical sized defect in the equine model evaluated over 6 months.


Osteoarthritis and Cartilage | 2013

Local gene delivery of heme oxygenase-1 by adeno-associated virus into osteoarthritic mouse joints exhibiting synovial oxidative stress

Sirkka Kyostio-Moore; D.S. Bangari; Patty J Ewing; Bindu Nambiar; Patricia Berthelette; Cathleen Sookdeo; Elizabeth Hutto; N. Moran; J. Sullivan; Gloria Matthews; A. Scaria; Donna Armentano

OBJECTIVE To evaluate the role of synovial oxidative stress on joint pathology in a spontaneous mouse model of osteoarthritis (OA) by intra-articular (IA) delivery of recombinant adeno-associated virus (rAAV) expressing anti-oxidant protein heme oxygenase-1 (HO-1). METHODS Joint transduction by rAAV vectors was evaluated with serotype 1, 2, 5 and 8 capsids carrying LacZ gene administered by IA injections into STR/ort mice. Transduced cell types were identified by β-galactosidase staining in sectioned joints. Effect of oxidative stress on AAV transduction of primary synoviocytes in vitro was quantitated by fluorescence-activated cell sorting (FACS) analysis. In vivo, the efficacy of rAAV1/HO-1 was tested by IA administration into STR/ort mice followed by histopathological scoring of cartilage. Levels of 3-nitrotyrosine (3-NT) and HO-1 were assessed by immunohistochemistry (IHC) of joint sections. RESULTS Administration of a rAAV1 based vector into OA mouse joints resulted in transduction of the synovium, joint capsule, adipocytes and skeletal muscle while none of the serotypes showed significant cartilage transduction. All OA joints exhibited significantly elevated levels of oxidative stress marker, 3-NT, in the synovium compared to OA-resistant CBA-strain of mice. In vitro studies demonstrated that AAV transgene expression in primary synoviocytes was augmented by oxidative stress induced by H(2)O(2) and that a rAAV expressing HO-1 reduced the levels of oxidative stress. In vivo, HO-1 was increased in the synovium of STR/ort mice. However, delivery of rAAV1/HO-1 into OA joints did not reduce cartilage degradation. CONCLUSIONS AAV-mediated HO-1 delivery into OA joints during active disease was not sufficient to improve cartilage pathology in this model.


Arthritis Research & Therapy | 2015

Overexpression of cystatin C in synovium does not reduce synovitis or cartilage degradation in established osteoarthritis

Sirkka Kyostio-Moore; Susan Piraino; Patricia Berthelette; N. Moran; Joseph Serriello; Alison M. Bendele; Cathleen Sookdeo; Bindu Nambiar; Patty J Ewing; Donna Armentano; Gloria Matthews

IntroductionCathepsin K (catK) expression is increased in cartilage, bone and synovium during osteoarthritis (OA). To study the role of catK expression and elevated cathepsin activity in the synovium on cartilage destruction in established OA, we overexpressed cystatin C (cysC), a natural cysteine protease inhibitor, in the synovium of rabbit OA joints.MethodsThe ability of cysC to inhibit activity of cathepsins in rabbit OA synovium lysates was tested in vitro using protease activity assay. In vivo, the tissue localization of recombinant adeno-associated virus (rAAV) with LacZ gene after intra-articular injection was determined by β-galactosidase staining of rabbit joints 4 weeks later. To inhibit cathepsin activity in the synovium, a rAAV2-encoding cysC was delivered intra-articularly into rabbit joints 4 weeks after OA was induced by anterior cruciate ligament transection (ACLT). Seven weeks postinjection, endogenous catK and cysC levels as well as the vector-derived cysC expression in the synovium of normal and OA joints were examined by RNA quantification. Synovial cathepsin activity and catK, catB and catL protein levels were determined by activity and Western blot analyses, respectively. Synovitis and cartilage degradation were evaluated by histopathological scoring.ResultsIn vitro, the ability of cysC to efficiently inhibit activity of purified catK and OA-induced cathepsins in rabbit synovial lysates was demonstrated. In vivo, the intra-articular delivery of rAAV2/LacZ showed transduction of mostly synovium. Induction of OA in rabbit joints resulted in fourfold increase in catK mRNA compared to sham controls while no change was detected in endogenous cysC mRNA levels in the synovium. Protein levels for catK, catB and catL were also increased in the synovium with a concomitant fourfold increase in cathepsin activity. Joints treated with rAAV2/cysC showed both detection of vector genomes and vector-derived cysC transcripts in the synovium. Production of functional cysC by the vector was demonstrated by complete block of cathepsin activity in the synovium. However, this did not decrease synovitis, bone sclerosis or progression of cartilage degradation.ConclusionsIncreased production of natural cathepsin inhibitor, cysC, in OA synovium does not alleviate synovitis or cartilage pathology during a preexisting OA.


Rheumatic Diseases Clinics of North America | 2013

Disease Modification: Promising Targets and Impediments to Success

Gloria Matthews

Osteoarthritis (OA) is a significant and growing concern to a large segment of the population. Effective treatments for slowing or stopping the progression of the disease are not available despite a great deal of investment-backed effort on the part of academia, government, and the pharmaceutical industry. Target selection has been problematic. Progress may also have been hindered to some extent by the prevalent cartilage-centric view of OA. Significant clinical development challenges remain for novel therapeutics in this area. This review elaborates on the challenges of disease-modifying OA drug development and points out specific therapeutic intervention strategies recently tried or currently being pursued.


Bioconjugate Chemistry | 2012

High-Affinity VEGF Antagonists by Oligomerization of a Minimal Sequence VEGF-Binding Domain

James E. Stefano; Julie Bird; Josephine Kyazike; Anthony Wai-Ming Cheng; Markryan Dwyer; Lihui Hou; Huawei Qiu; Gloria Matthews; Michael O’Callaghan; Clark Q. Pan

Vascular endothelial growth factor (VEGF) neutralizing antagonists including antibodies or receptor extracellular domain Fc fusions have been applied clinically to control angiogenesis in cancer, wet age-related macular degeneration, and edema. We report here the generation of high-affinity VEGF-binding domains by chemical linkage of the second domain of the VEGF receptor Flt-1 (D2) in several configurations. Recombinant D2 was expressed with a 13 a.a. C-terminal tag, including a C-terminal cysteine to enable its dimerization by disulfide bond formation or by attachment to divalent PEGs and oligomerization by coupling to multivalent PEGs. Disulfide-linked dimers produced by Cu(2+) oxidation of the free-thiol form of the protein demonstrated picomolar affinity for VEGF in solution, comparable to that of a D2-Fc fusion (sFLT01) and ~50-fold higher than monomeric D2, suggesting the 26 a.a. tag length between the two D2 domains permits simultaneous interaction of both faces of the VEGF homodimer. Extending the separation between the D2 domains by short PEG spacers from 0.35 kD to 5 kD produced a modest ~2-fold increase in affinity over the disulfide, thus defining the optimal distance between the two D2 domains for maximum affinity. By surface plasmon resonance (SPR), a larger (~5-fold) increase in affinity was observed by conjugation of the D2 monomer to the termini of 4-arm PEG, and yielding a product with a larger hydrodynamic radius than sFLT01. The higher affinity displayed by these D2 PEG tetramers than either D2 dimer or sFLT01 was largely a consequence of a slower rate of dissociation, suggesting the simultaneous binding by these tetramers to neighboring surface-bound VEGF. Finally, disulfide-linked D2 dimers showed a greater resistance to autocatalytic fragmentation than sFLT01 under elevated temperature stress, indicating such minimum-sequence constructs may be better suited for sustained-release formulations. Therefore, these constructs represent novel Fc-independent VEGF antagonists with ultrahigh affinity, high stability, and a range of hydrodynamic radii for application to multiple therapeutic targets.


Osteoarthritis and Cartilage | 2010

494 DEVELOPMENT OF BEHAVIORAL MEASURES OF OSTEOARTHRITIS-INDUCED PAIN IN RABBITS

A. Vardanyan; B. Mastis; J. Serriello; N. Moran; Gloria Matthews

Osteoarthritis (OA) is a painful and disabling disease affecting millions of patients worldwide. The existing drug therapies for OA reduce pain, but are only moderately effective. The broad objective of our work is to develop OA pain models to both better understand the pathogenesis of OA-induced pain and assess potential analgesic agents. The specific objective of the work described is to establish behavioral methods to measure OA induced spontaneous pain in rabbits, species that are not commonly used for pain studies, using weight bearing and rearing assessments. Weight bearing was evaluated by placing rabbits in a chamber, specifically designed so each hind paw was resting on a separate transducer pad, to accurately measure the difference in weight distribution between ipsilateral and contralateral limbs. Rearing assessment was accomplished by placing rabbits in spacious chambers, where animals could freely move, and measuring the number of rearing episodes over a fixed period of time. This allowed utilizing a well characterized surgical model of OA in rabbits anterior cruciate ligament transection (ACLT) that closely resembles post-traumatic OA in humans, as well as taking advantage of relatively large joint volume for assessment of intra-articularly delivered therapies. Author Keywords Osteoarthritis, pain, osteoarthritis-induced pain, behavioral measure, ACLT, rabbit, weight bearing, rearing.


Comparative Medicine | 2011

STR/ort Mice, a Model for Spontaneous Osteoarthritis, Exhibit Elevated Levels of Both Local and Systemic Inflammatory Markers

Sirkka Kyostio-Moore; Bindu Nambiar; Elizabeth Hutto; Patty J Ewing; Susan Piraino; Patricia Berthelette; Cathleen Sookdeo; Gloria Matthews; Donna Armentano

Collaboration


Dive into the Gloria Matthews's collaboration.

Researchain Logo
Decentralizing Knowledge