Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gloria Olaso-González is active.

Publication


Featured researches published by Gloria Olaso-González.


Journal of the American Chemical Society | 2009

Electrostatic Control of the Photoisomerization Efficiency and Optical Properties in Visual Pigments: On the Role of Counterion Quenching

Gaia Tomasello; Gloria Olaso-González; Piero Altoè; Marco Stenta; Luis Serrano-Andrés; Manuela Merchán; Giorgio Orlandi; Andrea Bottoni; Marco Garavelli

Hybrid QM(CASPT2//CASSCF/6-31G*)/MM(Amber) computations have been used to map the photoisomerization path of the retinal chromophore in Rhodopsin and explore the reasons behind the photoactivity efficiency and spectral control in the visual pigments. It is shown that while the electrostatic environment plays a central role in properly tuning the optical properties of the chromophore, it is also critical in biasing the ultrafast photochemical event: it controls the slope of the photoisomerization channel as well as the accessibility of the S(1)/S(0) crossing space triggering the ultrafast decay. The roles of the E113 counterion, the E181 residue, and the other amino acids of the protein pocket are explicitly analyzed: it appears that counterion quenching by the protein environment plays a key role in setting up the chromophores optical properties and its photochemical efficiency. A unified scenario is presented that discloses the relationship between spectroscopic and mechanistic properties in rhodopsins and allows us to draw a solid mechanism for spectral tuning in color vision pigments: a tunable counterion shielding appears as the elective mechanism for L<-->M spectral modulation, while a retinal conformational control must dictate S absorption. Finally, it is suggested that this model may contribute to shed new light into mutations-related vision deficiencies that opens innovative perspectives for experimental biomolecular investigations in this field.


Journal of the American Chemical Society | 2009

The Role of Adenine Excimers in the Photophysics of Oligonucleotides

Gloria Olaso-González; Manuela Merchán; Luis Serrano-Andrés

Energies and structures of different arrangements of the stacked adenine homodimer have been computed at the ab initio CASPT2 level of theory in isolation and in an aqueous environment. Adenine dimers are shown to form excimer singlet states with different degrees of stacking and interaction. A model for a 2-fold decay dynamics of adenine oligomers can be supported in which, after initial excitation in the middle UV range, unstacked or slightly stacked pairs of nucleobases will relax by an ultrafast internal conversion to the ground state, localizing the excitation in the monomer and through the corresponding conical intersection with the ground state. On the other hand, long-lifetime intrastrand stacked excimer singlet states will be formed in different conformations, including neutral and charge transfer dimers, which originate the red-shifted emission observed in the oligonucleotide chains and that will evolve toward the same monomer decay channel after surmounting an energy barrier. By computing the transient absorption spectra for the different structures considered and their relative stability in vacuo and in water, it is concluded that in the adenine homodimers the maximum-overlap face-to-face orientations are the most stable excimer conformations observed in experiment.


PLOS ONE | 2012

Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases.

Frédéric Derbré; Beatriz Ferrando; Mari Carmen Gomez-Cabrera; Fabian Sanchis-Gomar; Vladimir E. Martinez-Bello; Gloria Olaso-González; Ana Diaz; Arlette Gratas-Delamarche; Miguel Cerdá; Jose Viña

Alterations in muscle play an important role in common diseases and conditions. Reactive oxygen species (ROS) are generated during hindlimb unloading due, at least in part, to the activation of xanthine oxidase (XO). The major aim of this study was to determine the mechanism by which XO activation causes unloading-induced muscle atrophy in rats, and its possible prevention by allopurinol, a well-known inhibitor of this enzyme. For this purpose we studied one of the main redox sensitive signalling cascades involved in skeletal muscle atrophy i.e. p38 MAPKinase, and the expression of two well known muscle specific E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFbx; also known as atrogin-1) and Muscle RING (Really Interesting New Gene) Finger-1 (MuRF-1). We found that hindlimb unloading induced a significant increase in XO activity and in the protein expression of the antioxidant enzymes CuZnSOD and Catalase in skeletal muscle. The most relevant new fact reported in this paper is that inhibition of XO with allopurinol, a drug widely used in clinical practice, prevents soleus muscle atrophy by ∼20% after hindlimb unloading. This was associated with the inhibition of the p38 MAPK-MAFbx pathway. Our data suggest that XO was involved in the loss of muscle mass via the activation of the p38MAPK-MAFbx pathway in unloaded muscle atrophy. Thus, allopurinol may have clinical benefits to combat skeletal muscle atrophy in bedridden, astronauts, sarcopenic, and cachexic patients.


International Journal of Sports Medicine | 2011

Increased average longevity among the "Tour de France" cyclists.

Fabian Sanchis-Gomar; Gloria Olaso-González; D. Corella; Mari-Carmen Gomez-Cabrera; Jose Viña

It is widely held among the general population and even among health professionals that moderate exercise is a healthy practice but long term high intensity exercise is not. The specific amount of physical activity necessary for good health remains unclear. To date, longevity studies of elite athletes have been relatively sparse and the results are somewhat conflicting. The Tour de France is among the most gruelling sport events in the world, during which highly trained professional cyclists undertake high intensity exercise for a full 3 weeks. Consequently we set out to determine the longevity of the participants in the Tour de France, compared with that of the general population. We studied the longevity of 834 cyclists from France (n=465), Italy (n=196) and Belgium (n=173) who rode the Tour de France between the years 1930 and 1964. Dates of birth and death of the cyclists were obtained on December 31 (st) 2007. We calculated the percentage of survivors for each age and compared them with the values for the pooled general population of France, Italy and Belgium for the appropriate age cohorts. We found a very significant increase in average longevity (17%) of the cyclists when compared with the general population. The age at which 50% of the general population died was 73.5 vs. 81.5 years in Tour de France participants. Our major finding is that repeated very intense exercise prolongs life span in well trained practitioners. Our findings underpin the importance of exercising without the fear that becoming exhausted might be bad for ones health.


Journal of the American Geriatrics Society | 2014

Oxidative Stress Is Related to Frailty, Not to Age or Sex, in a Geriatric Population: Lipid and Protein Oxidation as Biomarkers of Frailty

Marta Inglés; Juan Gambini; José Antonio Carnicero; Francisco García-García; Leocadio Rodríguez-Mañas; Gloria Olaso-González; Mar Dromant; Consuelo Borras; Jose Viña

To ascertain whether indicators of oxidative damage to lipids (malondialdehyde (MDA)) and proteins (protein carbonylation) are biomarkers of frailty, after adjusting for age, sex, and other possible confounders.


Longevity & Healthspan Vol. 2 pp. 14-14 | 2013

Life-long spontaneous exercise does not prolong lifespan but improves health span in mice

Rebeca Garcia-Valles; Mari Carmen Gomez-Cabrera; Leocadio Rodríguez-Mañas; Francisco García-García; Ana Diaz; Inma Noguera; Gloria Olaso-González; Jose Viña

BackgroundLife expectancy at birth in the first world has increased from 35 years at the beginning of the 20th century to more than 80 years now. The increase in life expectancy has resulted in an increase in age-related diseases and larger numbers of frail and dependent people. The aim of our study was to determine whether life-long spontaneous aerobic exercise affects lifespan and healthspan in mice.ResultsMale C57Bl/6J mice, individually caged, were randomly assigned to one of two groups: sedentary (n = 72) or spontaneous wheel-runners (n = 72). We evaluated longevity and several health parameters including grip strength, motor coordination, exercise capacity (VO2max) and skeletal muscle mitochondrial biogenesis. We also measured the cortical levels of the brain-derived neurotrophic factor (BDNF), a neurotrophin associated with brain plasticity. In addition, we measured systemic oxidative stress (malondialdehyde and protein carbonyl plasma levels) and the expression and activity of two genes involved in antioxidant defense in the liver (that is, glutathione peroxidase (GPx) and manganese superoxide dismutase (Mn-SOD)). Genes that encode antioxidant enzymes are considered longevity genes because their over-expression may modulate lifespan. Aging was associated with an increase in oxidative stress biomarkers and in the activity of the antioxidant enzymes, GPx and Mn-SOD, in the liver in mice. Life-long spontaneous exercise did not prolong longevity but prevented several signs of frailty (that is, decrease in strength, endurance and motor coordination). This improvement was accompanied by a significant increase in the mitochondrial biogenesis in skeletal muscle and in the cortical BDNF levels.ConclusionLife-long spontaneous exercise does not prolong lifespan but improves healthspan in mice. Exercise is an intervention that delays age-associated frailty, enhances function and can be translated into the clinic.


Journal of Chemical Physics | 2006

Toward the understanding of DNA fluorescence: the singlet excimer of cytosine.

Gloria Olaso-González; Daniel Roca-Sanjuán; Luis Serrano-Andrés; Manuela Merchán

By using the multiconfigurational second-order perturbation method CASPT2, including corrections for the basis set superposition error, the lowest-singlet excited state of the face-to-face pi-stacked cytosine homodimer is revealed to be bound by about half an eV, being the source of an emissive feature consistent with the observed redshifted fluorescence.


Current Pharmaceutical Design | 2014

Pharmacological properties of physical exercise in the elderly.

Jose Viña; Consuelo Borras; Fabian Sanchis-Gomar; Vladimir E. Martinez-Bello; Gloria Olaso-González; Juan Gambini; Marta Inglés; Mari Carmen Gomez-Cabrera

Scientific evidence links physical activity to several benefits. Recently, we proposed the idea that exercise can be regarded as a drug. As with many drugs, dosage is of great importance. However, to issue a public recommendation of physical activity in aging is not an easy task. Exercise in the elderly needs to be carefully tailored and individualized with the specific objectives of the person or group in mind. The beneficial effects of exercise in two of the main age-related diseases, sarcopenia and Alzheimers Disease, are dealt with at the beginning of this report. Subsequently, dosage of exercise and the molecular signaling pathways involved in its adaptations are discussed. Exercise and aging are associated with oxidative stress so the paradox arises, and is discussed, as to whether exercise would be advisable for the aged population from an oxidative stress point of view. Two of the main redox-sensitive signaling pathways altered in old skeletal muscle during exercise, NF-κB and PGC-1α, are also reviewed. The last section of the manuscript is devoted to the age-associated diseases in which exercise is contraindicated. Finally, we address the option of applying exercise mimetics as an alternative for disabled old people. The overall denouement is that exercise is so beneficial that it should be deemed a drug both for young and old populations. If old adults adopted a more active lifestyle, there would be a significant delay in frailty and dependency with clear benefits to individual well-being and to the publics health.


Revista Española de Geriatría y Gerontología | 2013

Resveratrol: distribución, propiedades y perspectivas

Juan Gambini; Raúl López-Grueso; Gloria Olaso-González; Marta Inglés; Khira Abdelazid; Marya El Alami; Vicent Bonet-Costa; Consuelo Borras; Jose Viña

Resveratrol is a natural polyphenol which can be found in many plants and fruits, such as peanuts, mulberries, blueberries and, above all, in grapes and red wine. Its synthesis is regulated by the presence of stressful factors, such as fungal contamination and ultra-violet radiation. In plants, it plays a role as a phytoalexin, showing a capacity to inhibit the development of certain infections. Plant extracts which contain resveratrol have been employed by traditional medicine for more than 2000 years. Resveratrol was first isolated, and its properties were initially studied with scientific methods, thirty years ago. Its in vitro properties have been extensively studied and demonstrated. It is worth highlighting its activity as an anti-cancer agent, platelet anti-aggregation agent, anti-inflammatory, antiallergenic, etc. The activity of its in vivo properties are not so clear. There are many studies that report benefits on the cardiovascular system, illnesses such as diabetes, and in longevity. However, other authors did not find any agreement between in vitro and in vivo studies. This discrepancy is due to the bioavailability of resveratrol. After an oral dose, it has been demonstrated that the absorption is very high, but the metabolic pathways leave just a little free resveratrol in blood, therefore the bioavailability in the target tissues is very low and the concentrations used in in vitro studies are not found in these tissues. Thus, resveratrol is a very active molecule for maintaining health, but due to the low bioavailability not all the in vitro effects can be translated to in vivo. This opens a new potential approach, seeking derivatives of resveratrol that can be measured in the desired tissues.


Journal of Applied Physiology | 2014

Metabolomic analysis of long-term spontaneous exercise in mice suggests increased lipolysis and altered glucose metabolism when animals are at rest

Daniel Monleón; Rebeca Garcia-Valles; José Manuel Morales; Thomas Brioche; Gloria Olaso-González; Raúl López-Grueso; Mari Carmen Gomez-Cabrera; Jose Viña

Exercise has been associated with several beneficial effects and is one of the major modulators of metabolism. The working muscle produces and releases substances during exercise that mediate the adaptation of the muscle but also improve the metabolic flexibility of the complete organism, leading to adjustable substrate utilization. Metabolomic studies on physical exercise are scarce and most of them have been focused on the effects of intense exercise in professional sportsmen. The aim of our study was to determine plasma metabolomic adaptations in mice after a long-term spontaneous exercise intervention study (18 mo). The metabolic changes induced by long-term spontaneous exercise were sufficient to achieve complete discrimination between groups in the principal component analysis scores plot. We identified plasma indicators of an increase in lipolysis (elevated unsaturated fatty acids and glycerol), a decrease in glucose and insulin plasma levels and in heart glucose consumption (by PET), and altered glucose metabolism (decreased alanine and lactate) in the wheel running group. Collectively these data are compatible with an increase in skeletal muscle insulin sensitivity in the active mice. We also found an increase in amino acids involved in catecholamine synthesis (tyrosine and phenylalanine), in the skeletal muscle pool of creatine phosphate and taurine, and changes in phospholipid metabolism (phosphocholine and choline in lipids) between the sedentary and the active mice. In conclusion, long-term spontaneous wheel running induces significant plasma and tissue (heart) metabolic responses that remain even when the animal is at rest.

Collaboration


Dive into the Gloria Olaso-González's collaboration.

Top Co-Authors

Avatar

Jose Viña

University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge