Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gloria Sarasin is active.

Publication


Featured researches published by Gloria Sarasin.


Anatomical Sciences Education | 2012

Quality Management of Body Donation Program at the University of Padova.

Andrea Porzionato; Veronica Macchi; Carla Stecco; Anna Mazzi; Anna Rambaldo; Gloria Sarasin; Anna Parenti; Antonio Scipioni; Raffaele De Caro

Quality management improvement has become a recent focus of attention in medical education. The program for the donation of bodies and body parts (Body Donation Program) at the University of Padova has recently been subjected to a global quality management standard, the ISO 9001:2008 certification. The aim of the present work is to show how the above standard is useful in enhancing the efficiency of body donation procedures and the quality and output of medical education. The program is managed by means of the following interlinked procedures: the collection of body donations, death certificates, data, and body parts from living donors; the transportation and identification of cadavers; the management of bodies, body parts, equipment, instruments, purchasing of necessary materials, and setting up anatomical training sessions; the management of preventive and corrective actions; the management of documents and registration; the management of internal and external quality audits; and the review of outcomes and improvement planning. Monitoring indicators are identified in the numbers of donors and of donated body parts per year, education sessions, and satisfaction of learners and donors, as evaluated by questionnaires. The process management approach, the integrated involvement of medical, technical, and administrative staff in defining procedures, and the application of monitoring indicators allow quality improvement in all aspects of the Body Donation Program. Anat Sci Educ.


Advances in Experimental Medicine and Biology | 2012

Spexin Is Expressed in the Carotid Body and Is Upregulated by Postnatal Hyperoxia Exposure

Andrea Porzionato; Marcin Rucinski; Veronica Macchi; Carla Stecco; Gloria Sarasin; Maria Martina Sfriso; Camillo Di Giulio; Ludwik K. Malendowicz; Raffaele De Caro

Spexin is a recently identified peptide which is expressed in many different endocrine and nervous tissues. Due to the absence of data regarding spexin expression in the carotid body, the first aim of the present study was to investigate, through immunohistochemistry and Real-Time PCR, the expression and distribution of spexin in the rat and human carotid body. Moreover, the carotid body is known to undergo various structural and functional modifications in response to hyperoxic stimuli during the first postnatal period. Thus, we also evaluated if hyperoxia during the first postnatal weeks may produce changes in the spexin expression. Materials consisted of carotid bodies obtained at autopsy from five human adult subjects and sampled from 10 six-weeks old Sprague-Dawley rats. Five rats were maintained in normoxia for the first six postnatal weeks; five rats were exposed to 60% hyperoxia for 2 weeks and then maintained in normoxia for other 4 weeks. Diffuse anti-spexin immunoreactivity was found in type I cells of both humans and rats. No spexin immunoreactivity was visible in the type II cells. Hyperoxia exposure during the first 2 weeks of postnatal life caused a reduction of volume in the carotid body still apparent after 4 weeks of normoxia. Using real-time PCR, spexin expression was 6-7 times higher in hyperoxia-exposed rats than in normoxia-exposed ones. The expression of spexin in type I cells suggests a possible modulator role in peripheral chemoreception. Moreover, the ascertained role of spexin in the regulation of cell proliferation in other tissues (e.g., adrenal gland cortex) suggests a possible role of spexin also in the hyperoxia-induced plasticity of the carotid body.


Journal of Anatomy | 2014

The cubital tunnel: a radiologic and histotopographic study

Veronica Macchi; Cesare Tiengo; Andrea Porzionato; Carla Stecco; Gloria Sarasin; Shane R. Tubbs; Nicola Maffulli; Raffaele De Caro

Entrapment of the ulnar nerve at the elbow is the second most common compression neuropathy in the upper limb. The present study evaluates the anatomy of the cubital tunnel. Eighteen upper limbs were analysed in unembalmed cadavers using ultrasound examination in all cases, dissection in nine cases, and microscopic study in nine cases. In all cases, thickening of the fascia at the level of the tunnel was found at dissection. From the microscopic point of view, the ulnar nerve is a multifascicular trunk (mean area of 6.0 ± 1.5 mm2). The roof of the cubital tunnel showed the presence of superimposed layers, corresponding to fascial, tendineous and muscular layers, giving rise to a tri‐laminar structure (mean thickness 523 ± 235 μm). This multilayered tissue was hyperechoic (mean thickness 0.9 ± 0.3 mm) on ultrasound imaging. The roof of the cubital tunnel is elastic, formed by a myofascial trilaminar retinaculum. The pathological fusion of these three layers reduces gliding of the ulnar nerve during movements of the elbow joint. This may play a role in producing the symptoms typical of cubital tunnel syndrome. Independent from the surgical technique, decompression should span the ulnar nerve from the triceps brachii muscle to the flexor carpi ulnaris fascia.


Journal of Anatomy | 2008

Anatomic distribution of apoptosis in medulla oblongata of infants and adults.

Andrea Porzionato; Veronica Macchi; Diego Guidolin; Gloria Sarasin; Anna Parenti; R. De Caro

The aim of the study was to evaluate the distribution of apoptosis in the medullary nuclei of infants and adults who died of hypoxic‐ischaemic injury. Apoptosis was studied by terminal deoxynucleotidyl transferase‐mediated dUTP nick end‐labelling (TUNEL) in brainstems from 22 adults (7 subjects who died of opiate intoxication, 15 who died of other hypoxic‐ischaemic injury) and 10 infants. The nuclei examined included the hypoglossal, dorsal motor nucleus of the vagus, nucleus tractus solitarii, nucleus of the spinal trigeminal tract, cuneate, vestibular and inferior olivary nuclei. A morphometric analysis with the optical disector method was performed to calculate the mean percentages (± standard deviation) of TUNEL‐positive neuronal and glial cells for the sample populations. Opiate deaths did not have higher apoptotic indices than other adult hypoxic‐ischaemic deaths. Statistically significant differences between adults and infants were found in the neuronal apoptotic indices of the cuneate (28.2 ± 16.3% vs. 6.9 ± 8.7%), vestibular (24.7 ± 15.0% vs. 11.3 ± 11.4%), nucleus tractus solitarii (11.2 ± 11.2% vs. 2.3 ± 2.4%), dorsal motor nucleus of the vagus (6.8 ± 8.5% vs. 0.1 ± 0.2%) and hypoglossal (6.6 ± 5.7% vs. 0.1 ± 0.2%), indicating higher resistance of the neuronal populations of these infant medullary nuclei to terminal hypoxic‐ischaemic injury or post‐mortem changes. Differences in neuronal apoptotic index were also statistically significant among nuclei, suggesting differential characteristics of survival. Nuclei with higher neuronal apoptotic indices were the cuneate, vestibular and nucleus of the spinal trigeminal tract, which are located in the lateral medullary tegmentum and share the same vascular supply from the posterior inferior cerebellar artery.


Cells Tissues Organs | 2016

The infrapatellar adipose body: A histotopographic study

Veronica Macchi; Andrea Porzionato; Gloria Sarasin; Lucia Petrelli; Diego Guidolin; Marco Rossato; Chiara Giulia Fontanella; Arturo N. Natali; Raffaele De Caro

The infrapatellar fat pad (IFP) can be regarded as a peculiar form of fibro-adipose tissue localized close to the synovial membrane and articular cartilage. The aims of the present study were to analyze the microscopic anatomy of the IFP through histological and ultrastructural methods, comparing it with that of the subcutaneous tissue of the abdomen and of the knee. Ten specimens of IFP were sampled from bodies of the Donation Program of the University of Padua without a history of osteoarthritis. The IFP consisted of white adipose tissue, of lobular type, with lobules delimited by thin connective septa. The IFP lobule areas were smaller (p < 0.05) and the interlobular septa were thicker (p > 0.05) than those of subcutaneous tissues of the abdomen, whereas the IFP lobule areas were larger (p < 0.05) and the interlobular septa were thinner than those of the subcutaneous tissue of the knee (p < 0.05). The IFP adipocytes present a mean area of 3,708 ± 976 µm2 with a large intercellular space, whereas the mean area of the abdominal tissues was greater (6,082 ± 628 µm2; p < 0.05). At scanning electron microscopy the IFP adipocytes were covered by thick fibrillary sheaths, creating a basket around the adipocytes. The structural characteristics of the IFP (lobular aspect of the adipose tissue, thickness of the septa with scarce elastic fibers) could act as a plastic portion aimed at the absorption of pressure variation during knee articular activity. The extensive distribution of nerves suggests a possible role of the IFP as a mechanoreceptor, corresponding to a tridimensional connective mesh working in the proprioceptive regulation of the activity of the knee joint.


European Journal of Histochemistry | 2015

ECRG4 expression in normal rat tissues: expression study and literature review.

Andrea Porzionato; Marcin Rucinski; Veronica Macchi; Gloria Sarasin; Ludwik K. Malendowicz; R. De Caro

The Esophageal Cancer Related Gene 4 (ECRG4) is a highly conserved tumour suppressor gene encoding various peptides (augurin, CΔ16 augurin, ecilin, argilin, CΔ16 argilin) which can be processed and secreted. In the present work, we examined ECRG4 expression and location in a wide range of rat organs and reviewed the available literature. ECRG4 mRNA was identified in all examined tissues by quantitative PCR (qPCR). ECRG4 immunoreaction was mainly cytoplasmic, and was detected in heart and skeletal muscles, smooth muscle cells showing only weak reactions. In the digestive system, ECRG4 immunostaining was stronger in the esophageal epithelium, bases of gastric glands, hepatocytes and pancreatic acinar epithelium. In the lymphatic system, immunoreactive cells were detectable in the thymus cortex, lymph node medulla and splenic red pulp. In the central and peripheral nervous systems, different neuronal groups showed different reaction intensities. In the endocrine system, ECRG4 immunoreaction was detected in the hypothalamic paraventricular and supraoptic nuclei, hypophysis, thyroid and parathyroid glands, adrenal zona glomerularis and medulla and Leydig cells, as well as in follicular and luteal cells of the ovary. In the literature, ECRG4 has been reported to inhibit cell proliferation and increase apoptosis in various cell types. It is down-regulated, frequently due to hypermethylation, in esophageal, prostate, breast and colon cancers, together with glioma (oncosuppressor function), although it is up-regulated in papillary thyroid cancer (oncogenic role). ECRG4 expression is also higher in non-proliferating cells of the lymphatic system. In conclusion, our identification of ECRG4 in many structures suggests the involvement of ECRG4 in the tumorigenesis of other organs and also the need for further research. In addition, on the basis of the location of ECRG4 in neurons and endocrine cells and the fact that it can be secreted, its role as a neurotransmitter/neuromodulator and endocrine factor must be examined in depth in the future.


Journal of The Mechanical Behavior of Biomedical Materials | 2017

Investigation of biomechanical response of Hoffa's fat pad and comparative characterization

Chiara Giulia Fontanella; Emanuele Luigi Carniel; Alessandro Frigo; Veronica Macchi; Andrea Porzionato; Gloria Sarasin; Marco Rossato; Raffaele De Caro; Arturo N. Natali

The infrapatellar adipose body (Hoffas fat pad, IFP) is situated between the patellar tendon, the femoral condyle and the tibial plateau. The IFP consists of lobules of white adipose tissue delimited by thin connective septa. The actual structural functionality of the IFP is debated and should pertain to a cushioning role in the knee joint, providing to distribute and to damp mechanical stresses during articular activity. The present study is aimed to analyze the correlation between histological configuration and mechanical properties of the IFP, compared to other adipose tissues, partially differentiated by composition and conformation. Histological and ultrastructural methods were exploited to analyze the microscopic anatomies of IFP, knee (KSF) and abdominal (ASF) subcutaneous fat tissues. Numerical micro-models of the different tissues were developed by using histo-morphometric data, as the size of adipose lobules, the thickness of the septa and their composition. Numerical analyses made it possible to evaluate the mechanical functionality of the different fat tissues considering the characteristic loading conditions, as compressive and shear actions. The results pointed out the actual mechanical relevance of IFP and KSF, while ASF exhibited different mechanical properties. Furthermore, the contribution of connective septa and adipose lobules to compressive and shear mechanical behavior was elucidated. This preliminary investigation represents the basis for biomechanical interpretation and the definition of more refined model to be developed on the acquisition of additional histological and morphometric data.


Respiratory Physiology & Neurobiology | 2013

Cyclosporine and hyperoxia-induced lung damage in neonatal rats ☆

Andrea Porzionato; Patrizia Zaramella; Veronica Macchi; Gloria Sarasin; Camillo Di Giulio; Antonella Rigon; Davide Grisafi; Arben Dedja; Lino Chiandetti; Raffaele De Caro

Cyclosporine effects on hyperoxia-induced histopathological and functional changes in the rat adult lung are controversial and the newborn lung has not been studied. Thus, we evaluated the effects of cyclosporine in young rats after 60% hyperoxia exposure postnatally. Experimental categories included: (1) room air for the first 5 postnatal weeks with daily subcutaneous injections of saline from postnatal day (PN)15 to PN35; (2) room air with daily injections of cyclosporine from PN15 to PN35; (3) 60% oxygen from PN0 to PN14 and then daily saline injections during the following three weeks; (4) 60% oxygen from PN0 to PN14 followed by cyclosporine treatment from PN15 to PN35. Hyperoxia significantly reduced the number of secondary crests and microvessel density, and it increased the mean alveolar size and septa thickness. Cyclosporine treatment did not significantly modify the hyperoxia-induced changes. Conversely, in normoxia, cyclosporine reduced microvessel density and the number of secondary crests. In conclusion, cyclosporine did not modify alveolar and microvascular parameters in hyperoxia exposure, although it caused some changes in normoxia.


Rheumatology | 2017

Infrapatellar fat pad features in osteoarthritis: a histopathological and molecular study

Marta Favero; Hamza El-Hadi; Elisa Belluzzi; Marnie Granzotto; Andrea Porzionato; Gloria Sarasin; Anna Rambaldo; Claudio Iacobellis; Augusto Cigolotti; Chiara Giulia Fontanella; Arturo N. Natali; Roberta Ramonda; Pietro Ruggieri; Raffaele De Caro; Roberto Vettor; Marco Rossato; Veronica Macchi

Objective The infrapatellar fat pad (IFP) is considered a local producer of adipocytokines, suggesting a potential role in OA. The objective of this study was to evaluate the histopathological and molecular characteristics of OA IFPs compared with controls. Methods The histopathological characteristics of IFPs were evaluated in patients undergoing total knee replacements and in control patients (without OA), considering the following parameters: presence of inflammatory cells, vascularization, adipose lobules dimension and thickness of the interlobular septa. Immunohistochemistry was performed to evaluate VEGF, monocyte chemotactic protein 1 (MCP-1) and IL-6 proteins. Quantitative real time PCR was performed to evaluate the expression levels of adipocytokines in the OA IFPs. Results OA IFPs showed an increase in inflammatory infiltration, vascularization and thickness of the interlobular septa compared with controls. VEGF, MCP-1 and IL-6 proteins were higher in OA IFPs compared with in controls. Inflammatory infiltration, hyperplasia, vascularization and fibrosis were increased in OA IFP synovial membranes compared with in those of controls. VEGF protein levels were associated with an increased number of vessels in the OA IFPs, while MCP-1 and IL-6 protein levels were associated with higher grades of inflammatory infiltration. Leptin levels were positively correlated with adiponectin and MCP-1expression, while adiponectin positively correlated with peroxisome proliferative activated receptor gamma, MCP-1 and IFP vascularity. MCP-1 showed a positive correlation with peroxisome proliferative activated receptor gamma. IFP lobules dimensions were positively correlated with IL-6 expression and negatively with thickness of interlobular septa. VEGF mRNA levels were positively correlated with increased synovial vascularity. Conclusions OA IFPs and synovial membranes are more inflamed, vascularized and fibrous compared with those of control patients (without OA).


PLOS ONE | 2017

Saccharomyces boulardii CNCM I-745 supplementation reduces gastrointestinal dysfunction in an animal model of IBS

Paola Brun; Melania Scarpa; Chiara Marchiori; Gloria Sarasin; Valentina Caputi; Andrea Porzionato; Maria Cecilia Giron; Giorgio Palù; Ignazio Castagliuolo

Background We evaluated the effect of Saccharomyces boulardii CNCM I-745 on intestinal neuromuscular anomalies in an IBS-type mouse model of gastrointestinal motor dysfunctions elicited by Herpes Simplex Virus type 1 (HSV-1) exposure. Methods Mice were inoculated intranasally with HSV-1 (102 PFU) or vehicle at time 0 and 4 weeks later by the intragastric (IG) route (108 PFU). Six weeks after IG inoculum, mice were randomly allocated to receive oral gavage with either S. boulardii (107 CFU/day) or vehicle. After 4 weeks the following were determined: a) intestinal motility using fluorescein-isothiocyanate dextran distribution in the gut, fecal pellet expulsion, stool water content, and distal colonic transit of glass beads; b) integrity of the enteric nervous system (ENS) by immunohistochemistry on ileal whole-mount preparations and western blot of protein lysates from ileal longitudinal muscle and myenteric plexus; c) isometric muscle tension with electric field and pharmacological (carbachol) stimulation of ileal segments; and d) intestinal inflammation by levels of tumor necrosis factor α, interleukin(IL)-1β, IL-10 and IL-4. Results S. boulardii CNCM I-745 improved HSV-1 induced intestinal dysmotility and alteration of intestinal transit observed ten weeks after IG inoculum of the virus. Also, the probiotic yeast ameliorated the structural alterations of the ENS induced by HSV-1 (i.e., reduced peripherin immunoreactivity and expression, increased glial S100β protein immunoreactivity and neuronal nitric oxide synthase level, reduced substance P-positive fibers). Moreover, S. boulardii CNCM I-745 diminished the production of HSV-1 associated pro-inflammatory cytokines in the myenteric plexus and increased levels of anti-inflammatory interleukins. Conclusions S. boulardii CNCM I-745 ameliorated gastrointestinal neuromuscular anomalies in a mouse model of gut dysfunctions typically observed with irritable bowel syndrome.

Collaboration


Dive into the Gloria Sarasin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge