Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glyn R. Hemsworth is active.

Publication


Featured researches published by Glyn R. Hemsworth.


Nature | 2014

A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes

Johan Larsbrink; Theresa E. Rogers; Glyn R. Hemsworth; Lauren S. McKee; Alexandra S. Tauzin; Oliver Spadiut; Stefan Klinter; Nicholas A. Pudlo; Karthik Urs; Nicole M. Koropatkin; A. Louise Creagh; Charles A. Haynes; Amelia G. Kelly; Stefan Nilsson Cederholm; Gideon J. Davies; Eric C. Martens; Harry Brumer

A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed ‘dietary fibre’, from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.


Nature Chemical Biology | 2014

Discovery and characterization of a new family of lytic polysaccharide monooxygenases.

Glyn R. Hemsworth; Bernard Henrissat; Gideon J. Davies; Paul H. Walton

Lytic polysaccharide mono-oxygenases (LPMOs) are a recently discovered class of enzymes capable of oxidizing recalcitrant polysaccharides. They currently attract much attention due to their potential use in biomass conversion, notably in the production of biofuels. Past work has identified two discrete sequence-based families of these enzymes termed AA9 (formerly GH61) and AA10 (formerly CBM33). Here we report the discovery of a third family of LPMOs. Using a chitin-degrading exemplar from Aspergillus oryzae, we show that the 3-D structure of the enzyme shares some features of the previous two classes of LPMOs, including a copper active centre featuring the histidine brace active site, but is distinct in terms of its active site details and its EPR spectroscopy. The new AA11 family expands the LPMO clan with the potential to broaden both the range of potential substrates and the types of reactive copper-oxygen species formed at the active site of LPMOs.


Current Opinion in Structural Biology | 2013

Recent insights into copper-containing lytic polysaccharide mono-oxygenases.

Glyn R. Hemsworth; Gideon J. Davies; Paul H. Walton

Recently the role of oxidative enzymes in the degradation of polysaccharides by saprophytic bacteria and fungi was uncovered, challenging the classical model of polysaccharide degradation of being solely via a hydrolytic pathway. 3D structural analyses of lytic polysaccharide mono-oxygenases of both bacterial AA10 (formerly CBM33) and fungal AA9 (formerly GH61) enzymes revealed structures with β-sandwich folds containing an active site with a metal coordinated by an N-terminal histidine. Following some initial confusion about the identity of the metal ion it has now been shown that these enzymes are copper-dependent oxygenases. Here we assess recent developments in the academic literature, focussing on the structures of the copper active sites. We provide critical comparisons with known small-molecules studies of copper-oxygen complexes and with copper methane monoxygenase, another of natures powerful copper oxygenases.


Nature Communications | 2015

Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase.

Leila Lo Leggio; Thomas J. Simmons; Jens Christian N Poulsen; Kristian E. H. Frandsen; Glyn R. Hemsworth; Mary A. Stringer; Pernille von Freiesleben; Morten Tovborg; Katja Salomon Johansen; Leonardo De Maria; Paul Harris; Chee Leong Soong; Paul Dupree; Theodora Tryfona; Nicolas Lenfant; Bernard Henrissat; Gideon J. Davies; Paul H. Walton

Lytic polysaccharide monooxygenases (LPMOs) are recently discovered enzymes that oxidatively deconstruct polysaccharides. LPMOs are fundamental in the effective utilization of these substrates by bacteria and fungi; moreover, the enzymes have significant industrial importance. We report here the activity, spectroscopy and three-dimensional structure of a starch-active LPMO, a representative of the new CAZy AA13 family. We demonstrate that these enzymes generate aldonic acid-terminated malto-oligosaccharides from retrograded starch and boost significantly the conversion of this recalcitrant substrate to maltose by β-amylase. The detailed structure of the enzyme’s active site yields insights into the mechanism of action of this important class of enzymes.


Journal of the American Chemical Society | 2013

The copper active site of CBM33 polysaccharide oxygenases.

Glyn R. Hemsworth; Edward J. Taylor; Robbert Q. Kim; Rebecca C. Gregory; Sally Lewis; Johan P. Turkenburg; Alison Parkin; Gideon J. Davies; Paul H. Walton

The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme’s three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61.


Trends in Biotechnology | 2015

Lytic Polysaccharide Monooxygenases in Biomass Conversion

Glyn R. Hemsworth; Esther M. Johnston; Gideon J. Davies; Paul H. Walton

The derivation of second-generation biofuels from non-edible biomass is viewed as crucial for establishing a sustainable bio-based economy for the future. The inertness of lignocellulosic biomass makes its breakdown for conversion into fuels and other compounds a challenge. Enzyme cocktails can be utilized in the bio-refinery for lignocellulose deconstruction but until recently their costs were regarded as high. Lytic polysaccharide monooxygenases (LPMOs) offer tremendous promise for further process improvements owing to their ability to boost the activity of biomass-degrading enzyme consortia. Combining data from multiple disciplines, progress has been made in understanding the biochemistry of LPMOs. We review the academic literature in this area and highlight some of the key questions that remain.


Nature Chemical Biology | 2016

The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases

Kristian E. H. Frandsen; Thomas J. Simmons; Paul Dupree; Jens-Christian Navarro Poulsen; Glyn R. Hemsworth; Luisa Ciano; Esther M. Johnston; Morten Tovborg; Katja Salomon Johansen; Pernille von Freiesleben; Laurence Marmuse; Sébastien Fort; Sylvain Cottaz; Hugues Driguez; Bernard Henrissat; Nicolas Lenfant; Floriana Tuna; Amgalanbaatar Baldansuren; Gideon J. Davies; Leila Lo Leggio; Paul H. Walton

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural determination of an LPMO-oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases

Christian H. Kjaergaard; Munzarin F. Qayyum; Shaun D. Wong; Feng Xu; Glyn R. Hemsworth; Daniel J. Walton; Nigel A. Young; Gideon J. Davies; Paul H. Walton; Katja Salomon Johansen; Keith O. Hodgson; Britt Hedman; Edward I. Solomon

Significance Activation of the O-O bond in dioxygen is difficult but fundamental in biology. Nature has evolved several strategies to achieve this, often including copper as an enzyme cofactor. Copper-dependent enzymes usually use more than one metal to activate O2 by multielectron reduction, but recently it was discovered that cellulose and chitin degrading polysaccharide monooxygenase enzymes use only a single Cu center for catalysis, in a reaction that is of great interest to the biofuel industries. To understand this reactivity, we have determined the solution structures of both the reduced and oxidized Cu site, and determined experimentally and computationally how this site is capable of facile O2 activation by a thermodynamically difficult one-electron reduction, via an inner-sphere Cu-superoxide intermediate. Strategies for O2 activation by copper enzymes were recently expanded to include mononuclear Cu sites, with the discovery of the copper-dependent polysaccharide monooxygenases, also classified as auxiliary-activity enzymes 9–11 (AA9-11). These enzymes are finding considerable use in industrial biofuel production. Crystal structures of polysaccharide monooxygenases have emerged, but experimental studies are yet to determine the solution structure of the Cu site and how this relates to reactivity. From X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopies, we observed a change from four-coordinate Cu(II) to three-coordinate Cu(I) of the active site in solution, where three protein-derived nitrogen ligands coordinate the Cu in both redox states, and a labile hydroxide ligand is lost upon reduction. The spectroscopic data allowed for density functional theory calculations of an enzyme active site model, where the optimized Cu(I) and (II) structures were consistent with the experimental data. The O2 reactivity of the Cu(I) site was probed by EPR and stopped-flow absorption spectroscopies, and a rapid one-electron reduction of O2 and regeneration of the resting Cu(II) enzyme were observed. This reactivity was evaluated computationally, and by calibration to Cu-superoxide model complexes, formation of an end-on Cu-AA9-superoxide species was found to be thermodynamically favored. We discuss how this thermodynamically difficult one-electron reduction of O2 is enabled by the unique protein structure where two nitrogen ligands from His1 dictate formation of a T-shaped Cu(I) site, which provides an open coordination position for strong O2 binding with very little reorganization energy.


Journal of Biological Chemistry | 2011

The Crystal Structure of the Leishmania major Deoxyuridine Triphosphate Nucleotidohydrolase in Complex with Nucleotide Analogues, dUMP, and Deoxyuridine

Glyn R. Hemsworth; Olga V. Moroz; Mark J. Fogg; Benjamin Scott; Cristina Bosch-Navarrete; Dolores González-Pacanowska; Keith S. Wilson

Members of the Leishmania genus are the causative agents of the life-threatening disease leishmaniasis. New drugs are being sought due to increasing resistance and adverse side effects with current treatments. The knowledge that dUTPase is an essential enzyme and that the all α-helical dimeric kinetoplastid dUTPases have completely different structures compared with the trimeric β-sheet type dUTPase possessed by most organisms, including humans, make the dimeric enzymes attractive drug targets. Here, we present crystal structures of the Leishmania major dUTPase in complex with substrate analogues, the product dUMP and a substrate fragment, and of the homologous Campylobacter jejuni dUTPase in complex with a triphosphate substrate analogue. The metal-binding properties of both enzymes are shown to be dependent upon the ligand identity, a previously unseen characteristic of this family. Furthermore, structures of the Leishmania enzyme in the presence of dUMP and deoxyuridine coupled with tryptophan fluorescence quenching indicate that occupation of the phosphate binding region is essential for induction of the closed conformation and hence for substrate binding. These findings will aid in the development of dUTPase inhibitors as potential new lead anti-trypanosomal compounds.


Journal of Biological Chemistry | 2012

Structural Enzymology of Cellvibrio japonicus Agd31B Protein Reveals α-Transglucosylase Activity in Glycoside Hydrolase Family 31

Johan Larsbrink; Atsushi Izumi; Glyn R. Hemsworth; Gideon J. Davies; Harry Brumer

Background: Transglycosylases are important enzymes in bacterial glycogen metabolism. Results: The tertiary structure and function of a novel α-transglucosylase have been defined. Conclusion: In addition to previously known activities, glycoside hydrolase family 31 (GH31) contains a group of enzymes with 1,4-α-glucan 4-α-glucosyltransferase activity. Significance: This gives new insight into bacterial glycogen utilization and will inform future bioinformatics analyses of (meta)genomes. The metabolism of the storage polysaccharides glycogen and starch is of vital importance to organisms from all domains of life. In bacteria, utilization of these α-glucans requires the concerted action of a variety of enzymes, including glycoside hydrolases, glycoside phosphorylases, and transglycosylases. In particular, transglycosylases from glycoside hydrolase family 13 (GH13) and GH77 play well established roles in α-glucan side chain (de)branching, regulation of oligo- and polysaccharide chain length, and formation of cyclic dextrans. Here, we present the biochemical and tertiary structural characterization of a new type of bacterial 1,4-α-glucan 4-α-glucosyltransferase from GH31. Distinct from 1,4-α-glucan 6-α-glucosyltransferases (EC 2.4.1.24) and 4-α-glucanotransferases (EC 2.4.1.25), this enzyme strictly transferred one glucosyl residue from α(1→4)-glucans in disproportionation reactions. Substrate hydrolysis was undetectable for a series of malto-oligosaccharides except maltose for which transglycosylation nonetheless dominated across a range of substrate concentrations. Crystallographic analysis of the enzyme in free, acarbose-complexed, and trapped 5-fluoro-β-glucosyl-enzyme intermediate forms revealed extended substrate interactions across one negative and up to three positive subsites, thus providing structural rationalization for the unique, single monosaccharide transferase activity of the enzyme.

Collaboration


Dive into the Glyn R. Hemsworth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry Brumer

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Déjean

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Dupree

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karthik Urs

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge