Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glyn Williams is active.

Publication


Featured researches published by Glyn Williams.


Journal of Medicinal Chemistry | 2009

Fragment-Based Discovery of the Pyrazol-4-Yl Urea (at9283), a Multitargeted Kinase Inhibitor with Potent Aurora Kinase Activity.

Steven Howard; Valerio Berdini; John A. Boulstridge; Maria Grazia Carr; David M. Cross; Jayne Curry; Lindsay A. Devine; Theresa Rachel Early; Lynsey Fazal; Adrian Liam Gill; Michelle Heathcote; Sarita Maman; Julia E. Matthews; Rachel McMenamin; Eva Figueroa Navarro; Michael A. O’Brien; Marc O’Reilly; David C. Rees; Matthias Reule; Dominic Tisi; Glyn Williams; Mladen Vinkovic; Paul G. Wyatt

Here, we describe the identification of a clinical candidate via structure-based optimization of a ligand efficient pyrazole-benzimidazole fragment. Aurora kinases play a key role in the regulation of mitosis and in recent years have become attractive targets for the treatment of cancer. X-ray crystallographic structures were generated using a novel soakable form of Aurora A and were used to drive the optimization toward potent (IC(50) approximately 3 nM) dual Aurora A/Aurora B inhibitors. These compounds inhibited growth and survival of HCT116 cells and produced the polyploid cellular phenotype typically associated with Aurora B kinase inhibition. Optimization of cellular activity and physicochemical properties ultimately led to the identification of compound 16 (AT9283). In addition to Aurora A and Aurora B, compound 16 was also found to inhibit a number of other kinases including JAK2 and Abl (T315I). This compound demonstrated in vivo efficacy in mouse xenograft models and is currently under evaluation in phase I clinical trials.


Journal of Medicinal Chemistry | 2010

Fragment-Based Drug Discovery Applied to Hsp90. Discovery of Two Lead Series with High Ligand Efficiency.

Christopher W. Murray; Maria Grazia Carr; Owen Callaghan; Gianni Chessari; Miles Congreve; Suzanna Cowan; Joseph E. Coyle; Robert Downham; E Figueroa; Martyn Frederickson; Brent Graham; Rachel McMenamin; Michael Alistair O'brien; Sahil Patel; Theresa Rachel Phillips; Glyn Williams; Andrew James Woodhead; Alison Jo-Anne Woolford

Inhibitors of the chaperone Hsp90 are potentially useful as chemotherapeutic agents in cancer. This paper describes an application of fragment screening to Hsp90 using a combination of NMR and high throughput X-ray crystallography. The screening identified an aminopyrimidine with affinity in the high micromolar range and subsequent structure-based design allowed its optimization into a low nanomolar series with good ligand efficiency. A phenolic chemotype was also identified in fragment screening and was found to bind with affinity close to 1 mM. This fragment was optimized using structure based design into a resorcinol lead which has subnanomolar affinity for Hsp90, excellent cell potency, and good ligand efficiency. This fragment to lead campaign improved affinity for Hsp90 by over 1,000,000-fold with the addition of only six heavy atoms. The companion paper (DOI: 10.1021/jm100060b) describes how the resorcinol lead was optimized into a compound that is now in clinical trials for the treatment of cancer.


Current Opinion in Structural Biology | 2010

Higher Throughput Calorimetry: Opportunities, Approaches and Challenges

Francisco E. Torres; Michael I. Recht; Joseph E. Coyle; Richard H. Bruce; Glyn Williams

Higher throughput thermodynamic measurements can provide value in structure-based drug discovery during fragment screening, hit validation, and lead optimization. Enthalpy can be used to detect and characterize ligand binding, and changes that affect the interaction of protein and ligand can sometimes be detected more readily from changes in the enthalpy of binding than from the corresponding free-energy changes or from protein-ligand structures. Newer, higher throughput calorimeters are being incorporated into the drug discovery process. Improvements in titration calorimeters come from extensions of a mature technology and face limitations in scaling. Conversely, array calorimetry, an emerging technology, shows promise for substantial improvements in throughput and material utilization, but improved sensitivity is needed.


Journal of Medicinal Chemistry | 2015

Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Discovery of a Non-Alanine Lead Series with Dual Activity Against cIAP1 and XIAP.

Gianni Chessari; Ildiko Maria Buck; James E. H. Day; Philip J. Day; Aman Iqbal; Christopher Norbert Johnson; Edward J. Lewis; Vanessa Martins; Darcey Miller; Michael Reader; David C. Rees; Sharna J. Rich; Emiliano Tamanini; Marc Vitorino; George Ward; Pamela A. Williams; Glyn Williams; Nicola E. Wilsher; Alison Jo-Anne Woolford

Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptosis and pro-survival signaling pathways whose deregulation is often associated with tumor genesis and tumor growth. IAPs have been proposed as targets for anticancer therapy, and a number of peptidomimetic IAP antagonists have entered clinical trials. Using our fragment-based screening approach, we identified nonpeptidic fragments binding with millimolar affinities to both cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP). Structure-based hit optimization together with an analysis of protein-ligand electrostatic potential complementarity allowed us to significantly increase binding affinity of the starting hits. Subsequent optimization gave a potent nonalanine IAP antagonist structurally distinct from all IAP antagonists previously reported. The lead compound had activity in cell-based assays and in a mouse xenograft efficacy model and represents a highly promising start point for further optimization.


Angewandte Chemie | 2014

Exploring weak ligand-protein interactions by long-lived NMR states: improved contrast in fragment-based drug screening.

Roberto Buratto; Daniele Mammoli; Elisabetta Chiarparin; Glyn Williams; Geoffrey Bodenhausen

Ligands that have an affinity for protein targets can be screened very effectively by exploiting favorable properties of long-lived states (LLS) in NMR spectroscopy. In this work, we describe the use of LLS for competitive binding experiments to measure accurate dissociation constants of fragments that bind weakly to the ATP binding site of the N-terminal ATPase domain of heat shock protein 90 (Hsp90), a therapeutic target for cancer treatment. The LLS approach allows one to characterize ligands with an exceptionally wide range of affinities, since it can be used for ligand concentrations [L] that are several orders of magnitude smaller than the dissociation constants KD. This property makes the LLS method particularly attractive for the initial steps of fragment-based drug screening, where small molecular fragments that bind weakly to a target protein must be identified, which is a difficult task for many other biophysical methods.


ACS Medicinal Chemistry Letters | 2012

Fragment-Based Discovery of 7-Azabenzimidazoles as Potent, Highly Selective, and Orally Active CDK4/6 Inhibitors

Young Shin Cho; Hayley Angove; Christopher Thomas Brain; Christine Hiu-Tung Chen; Hong Cheng; Robert Cheng; Rajiv Chopra; Kristy Chung; Miles Congreve; Claudio Dagostin; Deborah J. Davis; Ruth Feltell; John William Giraldes; Steven Douglas Hiscock; Sunkyu Kim; Steven Kovats; Bharat Lagu; Kim Lewry; Alice Loo; Yipin Lu; Michael Luzzio; Wiesia Maniara; Rachel McMenamin; Paul N. Mortenson; Rajdeep Kaur Benning; Marc O'Reilly; David C. Rees; Junqing Shen; Troy Smith; Yaping Wang

Herein, we describe the discovery of potent and highly selective inhibitors of both CDK4 and CDK6 via structure-guided optimization of a fragment-based screening hit. CDK6 X-ray crystallography and pharmacokinetic data steered efforts in identifying compound 6, which showed >1000-fold selectivity for CDK4 over CDKs 1 and 2 in an enzymatic assay. Furthermore, 6 demonstrated in vivo inhibition of pRb-phosphorylation and oral efficacy in a Jeko-1 mouse xenograft model.


Journal of Medicinal Chemistry | 2016

Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered through X-ray Fragment Screening.

Alison Jo-Anne Woolford; Joseph E. Pero; Sridhar Aravapalli; Valerio Berdini; Joseph E. Coyle; Philip J. Day; Andrew M. Dodson; Pascal Grondin; Finn P. Holding; Lydia Y. W. Lee; Peng Li; Eric S. Manas; Joseph P. Marino; Agnes C. L. Martin; Brent W. Mccleland; Rachel McMenamin; Christopher W. Murray; Christopher E. Neipp; Lee W. Page; Vipulkumar Kantibhai Patel; Florent Potvain; Sharna J. Rich; Ralph A. Rivero; Kirsten S. Smith; Donald O. Somers; Lionel Trottet; Ranganadh Velagaleti; Glyn Williams; Ren Xie

Elevated levels of human lipoprotein-associated phospholipase A2 (Lp-PLA2) are associated with cardiovascular disease and dementia. A fragment screen was conducted against Lp-PLA2 in order to identify novel inhibitors. Multiple fragment hits were observed in different regions of the active site, including some hits that bound in a pocket created by movement of a protein side chain (approximately 13 Å from the catalytic residue Ser273). Using structure guided design, we optimized a fragment that bound in this pocket to generate a novel low nanomolar chemotype, which did not interact with the catalytic residues.


Drug Discovery Today | 2017

Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery

Glyn Williams; György G. Ferenczy; Johan Ulander; György M. Keserű

Small is beautiful - reducing the size and complexity of chemical starting points for drug design allows better sampling of chemical space, reveals the most energetically important interactions within protein-binding sites and can lead to improvements in the physicochemical properties of the final drug. The impact of fragment-based drug discovery (FBDD) on recent drug discovery projects and our improved knowledge of the structural and thermodynamic details of ligand binding has prompted us to explore the relationships between ligand-binding thermodynamics and FBDD. Information on binding thermodynamics can give insights into the contributions to protein-ligand interactions and could therefore be used to prioritise compounds with a high degree of specificity in forming key interactions.


Cancer Research | 2013

Abstract 2944: AT-IAP, a dual cIAP1 and XIAP antagonist with oral antitumor activity in melanoma models.

Gianni Chessari; Ahn Maria; Ildiko Maria Buck; Elisabetta Chiarparin; Joe Coyle; James E. H. Day; Martyn Frederickson; Charlotte Mary Griffiths-Jones; Keisha Hearn; Steven Howard; Tom D. Heightman; Petra Hillmann; Aman Iqbal; Christopher N. Johnson; Jon Lewis; Vanessa Martins; Joanne M. Munck; Mike Reader; Lee Page; Anna Hopkins; Alessia Millemaggi; Caroline Richardson; Gordon Saxty; Tomoko Smyth; Emiliano Tamanini; Neil Thompson; George Ward; Glyn Williams; Pamela A. Williams; Nicola E. Wilsher

Melanoma is a highly aggressive malignancy with an exceptional ability to develop resistance and no curative therapy is available for patients with metastatic disease. Inhibitor of apoptosis proteins (IAP) play a key role in preventing cell death by apoptosis. In normal cell, IAPs are highly regulated by endogenous antagonists (e.g. SMAC) but in melanoma cell lines and in patient samples expression levels of IAPs are generally high and depleting IAPs by siRNA tended to reduce cell viability, with XIAP reduction being the most efficient [1]. Small molecule IAP antagonists have the ability to switch IAP-controlled pro-survival pathways towards apoptosis and cell death. Recent evidence suggests that a true dual antagonist of both cIAP1 and XIAP will promote an effective apoptotic response through generation of death-inducing ripoptosome complexes, with resultant caspase activation [2, 3]. We have used our fragment-based drug discovery technology PyramidTM to derive a non-peptidomimetic IAP antagonist, AT-IAP, which does not have an alanine warhead and has nanomolar cellular potency for both XIAP and cIAP1. Initial pharmacokinetic and pharmacodynamic modeling of AT-IAP in mice bearing the MDA-MB-231 cell line indicated that daily oral dosing of AT-IAP at 30 mg/kg ensures high concentrations of compound in tumor and plasma over a 24 h period with resultant inhibition of both XIAP and cIAP1 and induction of apoptosis markers (cleaved PARP and cleaved caspase-3). In this paper, we describe the characterization of AT-IAP in melanoma models. An in vitro cell line proliferation screen demonstrated that 36% of melanoma cell lines exhibited enhanced sensitivity to AT-IAP, which was improved on addition of exogenous 1 ng/ml TNF-α (92% of cell lines were sensitive to AT-IAP + TNF-α). Sensitivity of melanoma cells to AT-IAP has also been confirmed in a panel of 20 primary melanoma tumors in colony formation assays set up in the presence and absence of added TNF-α. Finally, a set of biomarkers has been identified and used to predict single agent activity of AT-IAP in a range of melanoma cell line and patient derived xenograft models. [1] Engesaeter et al., Cancer Biology & Therapy, 2011, 12 (1), 47 [2] Ndubaku et al., ACS Chem Biol., 2009, 4 (7), 557 [3] Meier, P., Nat Rev. Cancer, 2010, 10 (8), 561 Citation Format: Gianni Chessari, Ahn Maria, Ildiko Buck, Elisabetta Chiarparin, Joe Coyle, James Day, Martyn Frederickson, Charlotte Griffiths-Jones, Keisha Hearn, Steven Howard, Tom Heightman, Petra Hillmann, Aman Iqbal, Christopher N. Johnson, Jon Lewis, Vanessa Martins, Joanne Munck, Mike Reader, Lee Page, Anna Hopkins, Alessia Millemaggi, Caroline Richardson, Gordon Saxty, Tomoko Smyth, Emiliano Tamanini, Neil Thompson, George Ward, Glyn Williams, Pamela Williams, Nicola Wilsher, Alison Woolford. AT-IAP, a dual cIAP1 and XIAP antagonist with oral antitumor activity in melanoma models. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 2944. doi:10.1158/1538-7445.AM2013-2944


Biomolecular Nmr Assignments | 2016

NMR backbone resonance assignment and solution secondary structure determination of human NSD1 and NSD2.

Nader Amin; Daniel Nietlispach; Seema Qamar; Joe Coyle; Elisabetta Chiarparin; Glyn Williams

Proteins of the NSD family are histone-methyl transferases with critical functions in the regulation of chromatin structure and function. NSD1 and NSD2 are homologous proteins that function as epigenetic regulators of transcription through their abilities to catalyse histone methylation. Misregulation of NSD1 and NSD2 expression or mutations in their genes are linked to a number of human diseases such as Sotos syndrome, and cancers including acute myeloid leukemia, multiple myeloma, and lung cancer. The catalytic domain of both proteins contains a conserved SET domain which is involved in histone methylation. Here we report the backbone resonance assignments and secondary structure information of the catalytic domains of human NSD1 and NSD2.

Collaboration


Dive into the Glyn Williams's collaboration.

Researchain Logo
Decentralizing Knowledge