Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glyn Williams-Jones is active.

Publication


Featured researches published by Glyn Williams-Jones.


Gsa Today | 2014

Dynamics of a large, restless, rhyolitic magma system at Laguna del Maule, southern Andes, Chile

Brad S. Singer; Nathan L. Andersen; Hélène Le Mével; Kurt L. Feigl; Charles DeMets; Basil Tikoff; Clifford H. Thurber; Brian R. Jicha; Carlos Cardonna; Loreto Córdova; Fernando Gil; Martyn J. Unsworth; Glyn Williams-Jones; Craig W. Miller; Judith Fierstein; Edward Hildreth; Jorge A. Vazquez

Explosive eruptions of large-volume rhyolitic magma systems are common in the geologic record and pose a major potential threat to society. Unlike other natural hazards, such as earthquakes and tsunamis, a large rhyolitic volcano may provide warning signs long before a caldera-forming eruption occurs. Yet, these signs—and what they imply about magma-crust dynamics—are not well known. This is because we have learned how these systems form, grow, and erupt mainly from the study of ash flow tuffs deposited tens to hundreds of thousands of years ago or more, or from the geophysical imaging of the unerupted portions of the reservoirs beneath the associated calderas. The Laguna del Maule Volcanic Field, Chile, includes an unusually large and recent concentration of silicic eruptions. Since 2007, the crust there has been inflating at an astonishing rate of at least 25 cm/yr. This unique opportunity to investigate the dynamics of a large rhyolitic system while magma migration, reservoir growth, and crustal deformation are actively under way is stimulating a new international collaboration. Findings thus far lead to the hypothesis that the silicic vents have tapped an extensive layer of crystal-poor, rhyolitic melt that began to form atop a magmatic mush zone that was established by ca. 20 ka with a renewed phase of rhyolite eruptions during the Holocene. Modeling of surface deformation, magnetotelluric data, and gravity changes suggest that magma is currently intruding at a depth of ~5 km. The next phase of this investigation seeks to enlarge the sets of geophysical and geochemical data and to use these observations in numerical models of system dynamics. INTRODUCTION Caldera-scale rhyolitic volcanoes can rapidly deposit hundreds of cubic kilometers of ash over several million square kilometers, threatening people and agriculture at the scale of an entire continent (Sparks et al., 2005; Lowenstern et al., 2006; Self, 2006). Sooner or later, Earth will experience another eruption of this magnitude (Lowenstern et al., 2006; Self and Blake, 2008); consequently, there is a need to gather comprehensive information and create multi-scale models that realistically capture the dynamics leading to these destructive events. Most of our current understanding of this type of volcanic system has been gleaned from the study of eruptive products long after the catastrophic eruption, including voluminous ash flow deposits, such as the Bishop, Bandelier, Huckleberry Ridge, and Oruanui Tuffs (Lowenstern et al., 2006; Hildreth and Wilson, 2007; Bachmann and Bergantz, 2008; Wilson, 2008). The most recent rhyolitic “super-eruption” produced the Oruanui Tuff 26,500 years ago in New Zealand. Even in this relatively recent case, the geologic evidence has been partly obliterated by caldera-collapse, erosion, and burial (Wilson et al., 2005). Moreover, probing the present-day structures beneath a number of calderas using seismic tomography (e.g., Romero et al., 1993; Steck et al., 1998; Farrell et al., 2014) or other geophysical measures (e.g., Lowenstern et al., 2006; Battaglia et al., 2003; Tizzani et al., 2009) has not detected eruptible domains of crystal-poor melt in the shallow crust, nor has it captured the dynamics that preceded these large eruptions. This paper focuses on the Laguna del Maule Volcanic Field, Chile, a large, potentially hazardous, rhyolitic magmatic system, where an alarming rate of surface uplift for the past seven years and concentrated swarms of shallow earthquakes prompted Observatorio Volcanologico de los Andes del Sur (OVDAS) to declare in March 2013 a yellow alert, signaling a potential eruption within months or years. Straddling the Andean range crest at 36° S (Fig. 1A), this volcanic field features: (1) 13 km of rhyolite that erupted both explosively and effusively during the past 20 k.y.; (2) a zone of low electrical resistivity in the shallow crust below the deforming area; (3) widespread elevated CO 2 concentrations; and (4) a negative (~10 mGal) Bouguer anomaly and preliminary evidence for a positive dynamic gravity signal indicating mass addition. The underlying magma system has been sampled by eruptions numerous times since its apparent inception in the late Pleistocene, including a dozen crystal-poor, glassy rhyolitic lavas during the Holocene. Linking the assembly and evolution of this


Geophysical Research Letters | 2004

Ozone depletion in tropospheric volcanic plumes

A. J. S. McGonigle; Pierre Delmelle; Clive Oppenheimer; Vitchko Tsanev; Thomas Delfosse; Glyn Williams-Jones; Keith A. Horton; Tamsin A. Mather

Ground based remote sensing techniques are used to measure volcanic SO2 fluxes in efforts to characterise volcanic activity. As these measurements are made several km from source there is the potential for in-plume chemical transformation of SO2 to sulphate aerosol (conversion rates are dependent on meteorological conditions), complicating interpretation of observed SO2 flux trends. In contrast to anthropogenic plumes, SO2 lifetimes are poorly constrained for tropospheric volcanic plumes, where the few previous loss rate estimates vary widely (from 99% per hour). We report experiments conducted on the boundary layer plume of Masaya volcano, Nicaragua during the dry season. We found that SO2 fluxes showed negligible variation with plume age or diurnal variations in temperature, relative humidity and insolation, providing confirmation that remote SO2 flux measurements (typically of approximate to500-2000 s old plumes) are reliable proxies for source emissions for ash free tropospheric plumes not emitted into cloud or fog.


Geophysical Research Letters | 2000

Volcanic eruption prediction: Magma chamber physics from gravity and deformation measurements

Hazel Rymer; Glyn Williams-Jones

One of the greatest remaining problems in modern volcanology is the process by which volcanic eruptions are triggered. It is generally accepted that eruptions are preceded by magma intrusion (Sigurdsson and Sparks, 1978). The degree of interaction between previously ponded magma in a chamber and newly intruded magma determines the nature and rate of eruption and also the chemistry of erupted lavas and shallow dykes. Here, we investigate the physics of this interaction. Volcano monitoring at its most effective is a synergy between basic science and risk assessment, while hazard mitigation depends on reliable interpretation of eruption precursors. The simple and much used Mogi model relates ground deformation (∆h) to changes in magma chamber volume. Gravity changes (∆g) combined with ground deformation provide information on magma chamber mass changes. Our new models predict how the ∆g/∆h gradient will evolve as a volcano develops from a state of dormancy through unrest into a state of explosive activity. Thus by simultaneous measurement of deformation and gravity at a few key stations, magma chamber processes can be identified prior to the onset of conventional eruption precursors.


Journal of Volcanology and Geothermal Research | 2003

Gravity changes and passive SO2 degassing at the Masaya caldera complex, Nicaragua

Glyn Williams-Jones; Hazel Rymer; David A. Rothery

An understanding of the mechanisms responsible for persistent volcanism can be acquired through the integration of geophysical and geochemical data sets. By interpreting data on micro-gravity, ground deformation and SO2 flux collected at Masaya Volcano since 1993, it is now clear that the characteristically cyclical nature of the activity is not driven by intrusion of additional magma into the system. Rather, it may be due in large part to the blocking and accumulation of gas by restrictions in the volcano substructure. The history of crater collapse and formation of caverns beneath the crater floor would greatly facilitate the trapping and storage of gas in a zone immediately beneath San Pedro and the other craters. Another mechanism that may explain the observed gravity and gas flux variations is the convective overturn of shallow, pre-existing, degassed, cooled, dense magma that is replaced periodically by lower density, hot, gas-rich magma from depth. Buoyant gas-rich magma rises from depth and is emplaced near the surface, resulting in the formation and fluctuation of a low-density gas-rich layer centred beneath Nindiri and Santiago craters. As this magma vigorously degasses, it must cool, increase in density and eventually sink. Five stages of activity have been identified at Masaya since 1853 and the most recent data suggest that the system may have been entering another period of reduced degassing in 2000. This type of analysis has important implications for hazard mitigation because periods of intense degassing are associated with poor agricultural yields and reduced quality of life. A better understanding of persistent cyclically active volcanoes will allow for more effective planning of urban development and agricultural land use.


Journal of Volcanology and Geothermal Research | 1997

Distal degassing of radon and carbon dioxide on Galeras volcano, Colombia

Martin Heiligmann; John Stix; Glyn Williams-Jones; Barbara Sherwood Lollar; V. Gustavo Garzón

Abstract Diffuse degassing at Galeras volcano, Colombia, was studied during three consecutive field seasons from 1993 to 1995. Measurements of222Rn and CO2 were made at 30 stations which were distributed on the volcano and on regional faults intersecting the edifice. Time series data show a decline of radon soil gas of up to 50% prior to a M 2.8 earthquake on 12 August 1993 at stations located near the epicenter and on the volcano near the location of earthquake swarms which occurred in April 1993, November–December 1993 and March 1995. The onset of volcanic seismic activity (‘tornillos’) on 9 August 1994 was preceded by anomalous soil gas increases at six stations located on the flanks of the volcano. On the southwestern flank, radon increased from 51 to 130 pCi/1 between 7 and 14 August, while on the northern flank, radon concentrations began to increase 19 days before the appearance of tornillos. In general, stations close to the crater showed the largest radon increases. Soil gas distributions and carbon isotope data suggest that diffuse degassing on the volcano is structurally controlled and that the abundance of CO2 in soil gas on the edifice cannot be taken as an indicator for the presence of magmatic gases. Radon soil gas concentrations and the222Rn emanating226Ra concentration increase near faults, whereas CO2 concentrations are more variable but commonly are higher on the volcano than near faults. δ13C values in soil CO2 vary between −8.5 and −23.2‰, with δ13C values more enriched than −15‰ found only in the vicinity of faults or sites prone to earthquake swarms. This suggests a magmatic origin of CO2 soil gas only near faults and an almost impermeable edifice in unfractured areas. The observed correlations between seismic activity and soil degassing provide further evidence that soil gas studies, especially when correlated to other methods of volcano surveillance such as seismicity and deformation, may be useful in forecasting volcanic and seismic events.


Earth and Planetary Science Letters | 2003

Hazard assessment during caldera unrest at the Campi Flegrei, Italy: a contribution from gravity-height gradients

Joachim Gottsmann; Giovanna Berrino; Hazel Rymer; Glyn Williams-Jones

Hazard assessment and risk mitigation at restless calderas is only possible with adequate geophysical monitoring. We show here how detailed long-term micro-gravity and deformation surveys may contribute to hazard assessment at the Campi Flegrei caldera (CFc) in Italy by evaluating gravity–height change (Δg/Δh) gradients obtained during ground inflation and deflation between 1981 and 2001. Such gradients provide a framework from which to assess the likelihood and type of volcanic eruptions. Our new analysis of unrest at the CFc allows us to separate ‘noise’ during the gravity survey from the signal of deep-seated magmatic processes. This facilitates identification of the dynamics within the magma reservoir beneath the CFc. We found that magma replenishment during rapid uplift between 1982 and 1984 was insufficient, probably by one to two orders of magnitude, to trigger an eruption similar to the 1538 Monte Nuovo eruption, the most recent volcanic eruption within the CFc. Furthermore, our interpretation of Δg/Δh gradients for the ongoing period of deflation since 1984 suggests that eruptive volcanic activity is not imminent. Short periods of minor inflation associated with large gravity changes since 1981 are interpreted to reflect noise, which to some degree is probably due to sub-surface mass/density changes within shallow hydrothermal systems beneath the CFc, indicating no risk of eruptive volcanic activity. We propose that monitoring Δg/Δh gradients at restless calderas is essential as a caldera develops from a state of unrest to a state where volcanic eruptions have to be anticipated. Adoption of this method for the several tens of restless calderas world-wide will provide early warning of changes in or increase of activity at these supervolcanoes.


Journal of Volcanology and Geothermal Research | 2002

Detecting volcanic eruption precursors: a new method using gravity and deformation measurements

Glyn Williams-Jones; Hazel Rymer

Abstract One of the fundamental questions in modern volcanology is the manner in which a volcanic eruption is triggered; the intrusion of fresh magma into a reservoir is thought to be a key component. The amount by which previously ponded reservoir magma interacts with a newly intruded magma will determine the nature and rate of eruption as well as the chemistry of erupted lavas and shallow dykes. The physics of this interaction can be investigated through a conventional monitoring procedure that incorporates the simple and much used Mogi model relating ground deformation (most simply represented by Δ h ) to changes in volume of a magma reservoir. Gravity changes (Δ g ) combined with ground deformation provide information on magma reservoir mass changes. Our models predict how, during inflation, the observed Δ g /Δ h gradient will evolve as a volcano develops from a state of dormancy through unrest into a state of explosive activity. Calderas in a state of unrest and large composite volcanoes are the targets for the methods proposed here and are exemplified by Campi Flegrei, Rabaul, Krafla, and Long Valley. We show here how the simultaneous measurement of deformation and gravity at only a few key stations can identify important precursory processes within a magma reservoir prior to the onset of more conventional eruption precursors.


Geophysics | 2008

Toward continuous 4D microgravity monitoring of volcanoes

Glyn Williams-Jones; Hazel Rymer; Guillaume Mauri; Joachim H Gottsmann; Michael P. Poland; Daniele Carbone

Four-dimensional or time-lapse microgravity monitoring has been used effectively on volcanoes for decades to characterize the changes in subsurface volcanic systems. With measurements typically lasting from a few days to weeks and then repeated a year later, the spatial resolution of theses studies is often at the expense of temporal resolution and vice versa. Continuous gravity studies with one to two instruments operating for a short period of time (weeks to months) have shown enticing evidence of very rapid changes in the volcanic plumbing system (minutes to hours) and in one case precursory signals leading to eruptive activity were detected. The need for true multi-instrument networks is clear if we are to have both the temporal and spatial reso-lution needed for effective volcano monitoring. However, the high cost of these instruments is currently limiting the implementation of continuous microgravity networks. An interim approach to consider is the development of a collaborative network of researchers able to bring multiple instruments together at key volcanoes to investigate multitemporal physical changes in a few type volcanoes. However, to truly move forward, it is imperative that new low-cost instruments are developed to increase the number of instruments available at a single site. Only in this way can both the temporal and spatial integrity of monitoring be maintained. Integration of these instruments into a multiparameter network of continuously recording sensors is essential for effective volcano monitoring and hazard mitigation.


Journal of Geophysical Research | 1998

The nature and origin of Venusian canali

Glyn Williams-Jones; Anthony E. Williams-Jones; John Stix

Venusian canali have many characteristics of terrestrial rivers, notably cutoff meanders, braiding, point bars, and deltas, which required both erosion and sediment transport. This implies that the canali were not formed by construction but rather by thermal or mechanical erosion. We have evaluated the relative importance of these latter two mechanisms, assuming a basaltic substrate and a surface temperature similar to that currently prevailing, ∼470°C. In order to have thermally eroded the canali, the liquid must have been turbulent and at a temperature above that of the basalt solidus. The most plausible candidates for this liquid are basalt and komatiite lavas. However, at realistic flow rates and extrusion temperatures, flow of basaltic lava is laminar, and therefore basaltic lavas could not have thermally eroded the canali. Although komatiite flow is initially turbulent, the lava will cool in hours to its solidus temperature, whereas it will take months to thermally erode canali. By elimination, only mechanical erosion can adequately explain canali formation. Based on incision and lateral migration rates for terrestrial rivers, it could take from >5 years (in unconsolidated regolith) to 8×105 years (in solid basalt) to mechanically erode a typical Venusian canale. These estimates require that the eroding agent had a solidus temperature close to the Venusian surface temperature and that viscosities remained low until solidification. Only halogen-rich, alkali carbonatite and sulfur lavas meet these criteria, and only the former could have been present in sufficient volumes to form the canali. We propose that the canali were mechanically eroded by such carbonatite lavas and that the latter originated from the fusion of anhydrous recycled crust, which had been altered by interaction with a CO2-, SO2-, and halogen-rich atmosphere.


Geophysics | 2008

4D gravity changes associated with the 2005 eruption of Sierra Negra volcano, Galápagos

Nathalie Vigouroux; Glyn Williams-Jones; William W. Chadwick; Dennis J. Geist; Andrés G. Ruiz; Daniel J. Johnson

Sierra Negra volcano, the most voluminous shield volcano in the Galapagos archipelago and one of the largest basaltic calderas in the world, erupted on October 22, 2005 after more than 25 years of quiescence. GPS and satellite radar interferometryInSAR monitoring of the deformation of the caldera floor in the months prior to the eruption documented extraordinary inflation rates 1c m/day. The total amount of uplift recorded since monitoring began in 1992 approached 5 m at the center of the caldera over the eight days of the eruption the caldera floor deflated a maximum of 5 m and subsquently renewed its inflation, but at a decelerating rate. To gain insight into the nature of the subsurface mass/density changes associated with the deformation, gravity measurements performed in 2005, 2006, and 2007 are compared to previous measurements from 2001-2002 when the volcano underwent a period of minor deflation and magma withdrawal. The residual gravity decrease between 2001-2002 and 2005 is among the largest ever recorded atan active volcano950 µGal and suggests that inflation was accompanied by a relative density decrease in the magmatic system. Forward modeling of the residual gravity data in 4D from 2002 to 2005 gives an estimate of the amount of vesiculation in the shallow sill required to explain the observed gravity variations. Geochemical constraints from melt inclusion and satellite remote-sensing data allow us to estimate the pre-eruptive gas content of the magma and place constraints on the thickness of the gas-rich sill necessary to produce the gravity anomalies observed. Results suggest that reasonable sill thicknesses 700–800 m and bubble contents 10–50 volume % can explain the large decrease in residual gravity prior to eruption. Following the eruption 2006 and 2007, the deformation and gravity patterns suggest re-equilibration of the pressure regime in the shallow magma system via a renewed influx of relatively gas-poor magma into the shallow parts of the system.

Collaboration


Dive into the Glyn Williams-Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harold Garbeil

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Delmelle

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge