Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Goangseup Zi is active.

Publication


Featured researches published by Goangseup Zi.


Journal of Applied Mathematics | 2013

A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics

Nam Vu-Bac; H. Nguyen-Xuan; L. Chen; Chang-Kye Lee; Goangseup Zi; Xiaoying Zhuang; G.R. Liu; Timon Rabczuk

This paper presents a novel numerical procedure based on the combination of an edge-based smoothed finite element (ES-FEM) with a phantom-node method for 2D linear elastic fracture mechanics. In the standard phantom-node method, the cracks are formulated by adding phantom nodes, and the cracked element is replaced by two new superimposed elements. This approach is quite simple to implement into existing explicit finite element programs. The shape functions associated with discontinuous elements are similar to those of the standard finite elements, which leads to certain simplification with implementing in the existing codes. The phantom-node method allows modeling discontinuities at an arbitrary location in the mesh. The ES-FEM model owns a close-to-exact stiffness that is much softer than lower-order finite element methods (FEM). Taking advantage of both the ES-FEM and the phantom-node method, we introduce an edge-based strain smoothing technique for the phantom-node method. Numerical results show that the proposed method achieves high accuracy compared with the extended finite element method (XFEM) and other reference solutions.


ACS Nano | 2015

Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars

Heun Park; Yu Ra Jeong; Junyeong Yun; Soo Yeong Hong; Sangwoo Jin; Seung Jung Lee; Goangseup Zi; Jeong Sook Ha

We report on the facile fabrication of a stretchable array of highly sensitive pressure sensors. The proposed pressure sensor consists of the top layer of Au-deposited polydimethylsiloxane (PDMS) micropillars and the bottom layer of conductive polyaniline nanofibers on a polyethylene terephthalate substrate. The sensors are operated by the changes in contact resistance between Au-coated micropillars and polyaniline according to the varying pressure. The fabricated pressure sensor exhibits a sensitivity of 2.0 kPa(-1) in the pressure range below 0.22 kPa, a low detection limit of 15 Pa, a fast response time of 50 ms, and high stability over 10000 cycles of pressure loading/unloading with a low operating voltage of 1.0 V. The sensor is also capable of noninvasively detecting human-pulse waveforms from carotid and radial artery. A 5 × 5 array of the pressure sensors on the deformable substrate, which consists of PDMS islands for sensors and the mixed thin film of PDMS and Ecoflex with embedded liquid metal interconnections, shows stable sensing of pressure under biaxial stretching by 15%. The strain distribution obtained by the finite element method confirms that the maximum strain applied to the pressure sensor in the strain-suppressed region is less than 0.04% under a 15% biaxial strain of the unit module. This work demonstrates the potential application of our proposed stretchable pressure sensor array for wearable and artificial electronic skin devices.


Journal of Geophysical Research | 2003

Size effect law and fracture mechanics of the triggering of dry snow slab avalanches

Zdeněk P. Bažant; Goangseup Zi; David M. McClung

(1) A size effect law for fracture triggering in dry snow slabs of high enough length-to- thickness ratio is formulated, based on simplified one-dimensional analysis by equivalent linear elastic fracture mechanics. Viscoelastic effects during fracture are neglected. The derived law, which is analogous to Bazants energetic size effect law developed for concrete and later for sea ice, fiber composites, rocks, and ceramics, is shown to agree with two-dimensional finite element analysis of mode II cohesive crack model with a finite residual shear stress. Fitting the proposed size effect law to fracture data for various slab thicknesses permits identifying the material fracture parameters. The value of preexisting shear stress in a thin weak zone of finite length is shown to have significant effect. There exists a certain critical snow depth, depending on the preexisting stress value, below which the size effect disappears. Practical applications require considering that the material properties (particularly the mode II fracture toughness or fracture energy) at the snow slab base are not constant but depend strongly on the slab thickness. This means that one must distinguish the material size effect from the structural size effect, and the combined size effect law must be obtained by introducing into the structural size effect law dependence of its parameters on snow thickness. The thickness dependence of these parameters can be obtained by matching the combined law to avalanche observations. Matching Perlas field data on 116 avalanches suggests that the mode II fracture toughness is approximately proportional to 1.8 power of snow thickness. INDEX TERMS: 1827 Hydrology: Glaciology (1863); 1863 Hydrology: Snow and ice (1827); 3210 Mathematical Geophysics: Modeling; 3220 Mathematical Geophysics: Nonlinear dynamics; 8020 Structural Geology: Mechanics; KEYWORDS: snow, avalanches, scaling, size effect, fracture mechanics


International Journal of Fracture | 1999

Size effect on compression strength of fiber composites failing by kink band propagation

Zdeněk P. Bažant; Jang Jay H Kim; I. M. Daniel; Emilie Becq-Giraudon; Goangseup Zi

The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of novel geometrically similar carbon–PEEK specimens, with notches slanted so as to lead to a pure kink band (not accompanied by shear or splitting cracks), are conducted. They confirm the possibility of stable growth of long kind bands before the peak load, and reveal the existence of a strong (deterministic, non-statistical) size effect. The bi-logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bažant. The plot exhibits a gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or strength criteria), to an asymptote of slope -1/2 (characteristic of linear elastic fracture mechanics, LEFM). A new derivation of this law by approximate (asymptotically correct) J-integral analysis of the energy release, as well as by the recently proposed nonlocal fracture mechanics, is given. The size effect law is further generalized to notch-free specimens attaining the maximum load after a stable growth of a kink band transmitting a uniform residual stress, and the generalized law is verified by Soutis, Curtis and Flecks recent compression tests of specimens with holes of different diameters. The nominal strength of specimens failing at the initiation of a kink band from a smooth surface is predicted to also exhibit a (deterministic) size effect if there is a nonzero stress gradient at the surface. A different size effect law is derived for this case by analyzing the stress redistribution. The size effect law for notched specimens permits the fracture energy of the kink band and the length of the fracture process zone at the front of the band to be identified solely from the measurements of maximum loads. The results indicate that the current design practice, which relies on the strength criteria or plasticity and thus inevitably misses the size effect, is acceptable only for small structural parts and, in the interest of safety, should be revised in the case of large structural parts.


Advanced Materials | 2016

Stretchable Active Matrix Temperature Sensor Array of Polyaniline Nanofibers for Electronic Skin

Soo Yeong Hong; Yong Hui Lee; Heun Park; Sang Woo Jin; Yu Ra Jeong; Junyeong Yun; Ilhwan You; Goangseup Zi; Jeong Sook Ha

A stretchable polyaniline nanofiber temperature sensor array with an active matrix consisting of single-walled carbon nanotube thin-film transistors is demonstrated. The integrated temperature sensor array gives mechanical stability under biaxial stretching of 30%, and the resultant spatial temperature mapping does not show any mechanical or electrical degradation.


Modelling and Simulation in Materials Science and Engineering | 2004

A method for growing multiple cracks without remeshing and its application to fatigue crack growth

Goangseup Zi; Jeong-Hoon Song; Elisa Budyn; Sang-Ho Lee; Ted Belytschko

A numerical model to analyse the growth and the coalescence of cracks in a quasibrittle cell containing multiple cracks is presented. The method is based on the extended finite element method in which discontinuous enrichment functions are added to the finite element approximation to take into account the presence of the cracks, so that it requires no remeshing. In order to describe the discontinuities only the tip enrichment and the step enrichment are used. The method does not require a special enrichment for the junction of two cracks and the junction is automatically captured by the combination of the step enrichments. The geometry of the cracks which is described implicitly by the level set method is independent of the finite element mesh. In the numerical example, linear elastic fracture mechanics is adopted to describe the behaviour of the cracks along with the Paris fatigue law and the intact bulk material is assumed to be elastic. The numerical results show that cracks can grow and interconnect with each other without remeshing as fatigue progresses and that the pattern of fatigue crack development converges with mesh refinement.


Inverse Problems in Science and Engineering | 2016

Detection of material interfaces using a regularized level set method in piezoelectric structures

S.S. Nanthakumar; Tom Lahmer; Xiaoying Zhuang; Goangseup Zi; Timon Rabczuk

An algorithm to solve the inverse problem of detecting inclusion interfaces in a piezoelectric structure is proposed. The material interfaces are implicitly represented by level sets which are identified by applying regularization using total variation penalty terms. The inverse problem is solved iteratively and the extended finite element method is used for the analysis of the structure in each iteration. The formulation is presented for three-dimensional structures and inclusions made of different materials are detected by using multiple level sets. The results obtained prove that the iterative procedure proposed can determine the location and approximate shape of material sub-domains in the presence of higher noise levels.


ACS Nano | 2014

Biaxially stretchable, integrated array of high performance microsupercapacitors

Yein Lim; Jangyeol Yoon; Junyeong Yun; Daeil Kim; Soo Yeong Hong; Seung Jung Lee; Goangseup Zi; Jeong Sook Ha

We report on the fabrication of a biaxially stretchable array of high performance microsupercapacitors (MSCs) on a deformable substrate. The deformable substrate is designed to suppress local strain applied to active devices by locally implanting pieces of stiff polyethylene terephthalate (PET) films within the soft elastomer of Ecoflex. A strain suppressed region is formed on the top surface of the deformable substrate, below which PET films are implanted. Active devices placed within this region can be isolated from the strain. Analysis of strain distribution by finite element method confirms that the maximum strain applied to MSC in the strain suppressed region is smaller than 0.02%, while that on the Ecoflex film is larger than 250% under both uniaxial strain of 70% and biaxial strain of 50%. The all-solid-state planar MSCs, fabricated with layer-by-layer deposited multiwalled carbon nanotube electrodes and patterned ionogel electrolyte of poly(ethylene glycol) diacrylate and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide having high-potential windows, are dry-transferred onto the deformable substrate and electrically connected in series and parallel via embedded liquid metal interconnection and Ag nanowire contacts. Liquid metal interconnection, formed by injecting liquid metal into the microchannel embedded within the substrate, can endure severe strains and requires no additional encapsulation process. This formed MSC array exhibits high energy and power density of 25 mWh/cm(3) and 32 W/cm(3), and stable electrochemical performance up to 100% uniaxial and 50% biaxial stretching. The high output voltage of the MSC array is used to light micro-light-emitting diode (μ-LED) arrays, even under strain conditions. This work demonstrates the potential application of our stretchable MSC arrays to wearable and bioimplantable electronics with a self-powered system.


ACS Nano | 2014

High-Density, Stretchable, All-Solid-State Microsupercapacitor Arrays

Soo Yeong Hong; Jangyeol Yoon; Sang Woo Jin; Yein Lim; Seung Jung Lee; Goangseup Zi; Jeong Sook Ha

We report on the successful fabrication of stretchable microsupercapacitor (MSC) arrays on a deformable polymer substrate that exhibits high electrochemical performance even under mechanical deformation such as bending, twisting, and uniaxial strain of up to 40%. We designed the deformable substrate to minimize the strain on MSCs by adopting a heterogeneous structure consisting of stiff PDMS islands (on which MSCs are attached) and a soft thin film (mixture of Ecoflex and PDMS) between neighboring PDMS islands. Finite element method analysis of strain distribution showed that an almost negligible strain of 0.47% existed on the PDMS islands but a concentrated strain of 107% was present on the soft thin film area under a uniaxial strain of 40%. The use of an embedded interconnection of the liquid metal Galinstan helped simplify the fabrication and provided mechanical stability under deformation. Furthermore, double-sided integration of MSCs increased the capacitance to twice that of MSCs on a conventional planar deformable substrate. In this study, planar-type MSCs with layer-by-layer assembled hybrid thin film electrodes of MWNT/Mn3O4 and PVA-H3PO4 electrolyte were fabricated; when they are integrated into a circuit, these MSCs increase the output voltage beyond the potential of the electrolyte used. Therefore, various LEDs that require high voltages can be operated under a high uniaxial strain of 40% without any decrease in their brightness. The results obtained in this study demonstrate the high potential of our stretchable MSC arrays for their application as embedded stretchable energy storage devices in bioimplantable and future wearable nanoelectronics.


Advanced Materials | 2014

Design and Fabrication of Novel Stretchable Device Arrays on a Deformable Polymer Substrate with Embedded Liquid‐Metal Interconnections

Jangyeol Yoon; Soo Yeong Hong; Yein Lim; Seung Jung Lee; Goangseup Zi; Jeong Sook Ha

Stretchable devices are fabricated on a newly designed deformable substrate. Active devices attached on the stiff islands are electrically connected by an embedded EGaIn interconnection, which ensures protection from external damage. In this structure, the local strain in the active device area is estimated to be less than 1% under applied strain of 30% by analysis of the strain distribution using the finite element method.

Collaboration


Dive into the Goangseup Zi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thanh Chau-Dinh

Ho Chi Minh City University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge