Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Godelieve Gheysen is active.

Publication


Featured researches published by Godelieve Gheysen.


Plant Physiology | 2011

The Jasmonate Pathway Is a Key Player in Systemically Induced Defense against Root Knot Nematodes in Rice

Kamrun Nahar; Tina Kyndt; David De Vleesschauwer; Monica Höfte; Godelieve Gheysen

Complex defense signaling pathways, controlled by different hormones, are involved in the reaction of plants to a wide range of biotic and abiotic stress factors. We studied the ability of salicylic acid, jasmonate (JA), and ethylene (ET) to induce systemic defense in rice (Oryza sativa) against the root knot nematode Meloidogyne graminicola. Exogenous ET (ethephon) and JA (methyl jasmonate) supply on the shoots induced a strong systemic defense response in the roots, exemplified by a major up-regulation of pathogenesis-related genes OsPR1a and OsPR1b, while the salicylic acid analog BTH (benzo-1,2,3-thiadiazole-7-carbothioic acid S-methyl ester) was a less potent systemic defense inducer from shoot to root. Experiments with JA biosynthesis mutants and ET-insensitive transgenics showed that ET-induced defense requires an intact JA pathway, while JA-induced defense was still functional when ET signaling was impaired. Pharmacological inhibition of JA and ET biosynthesis confirmed that JA biosynthesis is needed for ET-induced systemic defense, and quantitative real-time reverse transcription-polymerase chain reaction data revealed that ET application onto the shoots strongly activates JA biosynthesis and signaling genes in the roots. All data provided in this study point to the JA pathway to play a pivotal role in rice defense against root knot nematodes. The expression of defense-related genes was monitored in root galls caused by M. graminicola. Different analyzed defense genes were attenuated in root galls caused by the nematode at early time points after infection. However, when the exogenous defense inducers ethephon and methyl jasmonate were supplied to the plant, the nematode was less effective in counteracting root defense pathways, hence making the plant more resistant to nematode infection.


Gene | 2012

Functional roles of effectors of plant-parasitic nematodes

Annelies Haegeman; Sophie Mantelin; John T. Jones; Godelieve Gheysen

Plant pathogens have evolved a variety of different strategies that allow them to successfully infect their hosts. Plant-parasitic nematodes secrete numerous proteins into their hosts. These proteins, called effectors, have various functions in the plant cell. The most studied effectors to date are the plant cell wall degrading enzymes, which have an interesting evolutionary history since they are believed to have been acquired from bacteria or fungi by horizontal gene transfer. Extensive genome, transcriptome and proteome studies have shown that plant-parasitic nematodes secrete many additional effectors. The function of many of these is less clear although during the last decade, several research groups have determined the function of some of these effectors. Even though many effectors remain to be investigated, it has already become clear that they can have very diverse functions. Some are involved in suppression of plant defences, while others can specifically interact with plant signalling or hormone pathways to promote the formation of nematode feeding sites. In this review, the most recent progress in the understanding of the function of plant-parasitic nematode effectors is discussed.


Molecular Plant-microbe Interactions | 2002

An Arabidopsis thaliana Pectin Acetylesterase Gene Is Upregulated in Nematode Feeding Sites Induced by Root-knot and Cyst Nematodes

Isabel Vercauteren; Janice de Almeida Engler; Ruth De Groodt; Godelieve Gheysen

By using differential display, gene expression was investigated in Arabidopsis thaliana roots shortly after nematode infection, and a putative pectin acetylesterase (PAE) homolog (DiDi 9C-12) was found to be upregulated. PAEs catalyze the deacetylation of pectin, a major compound of primary cell walls. mRNA in situ hybridization experiments showed that the expression of DiDi 9C-12 was enhanced very early after infection in initiating giant-cells and in cells surrounding the nematodes. Later on, the level of DiDi 9C-12 mRNA was lower in giant-cells and transcripts were mainly found in parenchyma, endodermis, and pericycle cells of the root gall. Twenty days after infection, DiDi 9C-12 transcripts could no longer be detected. DiDi 9C-12 transcripts were also found in young syncytia and in the cells surrounding the expanding syncytium. Our results suggest that plant parasitic nematodes can modulate the rapid growth of the feeding cells and the expansion of the root gall by triggering the expression of DiDi 9C-12. PAEs, which probably act together with a range of other pectin-degrading enzymes, could be involved in softening and loosening the primary cell wall in nematode-infected plant roots.


Molecular Plant-microbe Interactions | 1996

Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato gst1 gene.

Günter Strittmatter; Godelieve Gheysen; Vivienne Gianinazzi-Pearson; Karoline Hahn; Andreas Niebel; Wolfgang Rohde; Eckhard Tacke

By histochemical GUS staining, we demonstrate that transcription from a short promoter fragment of the potato gst1 gene is locally induced after infection of a host plant with various types of pathogenic or symbiotic organisms. This regulatory unit is not active in noninfected tissues, except root apices and senescing leaves. Measuring the expression of a fusion between the promoter fragment and the gus gene in transgenic plants, therefore, allows comparison of the induction of defense reactions in different types of plant-microbe interactions, in one and the same plant.


Theoretical and Applied Genetics | 2002

AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador

B. Van Droogenbroeck; Peter Breyne; Paul Goetghebeur; E. Romeijn-Peeters; Tina Kyndt; Godelieve Gheysen

Abstract.The AFLP technique was used to assess the genetic relationships among the cultivated papaya (Carica papaya L.) and related species native to Ecuador. Genetic distances based on AFLP data were estimated for 95 accessions belonging to three genera including C. papaya, at least eight Vasconcella species and two Jacaratia species. Cluster analysis using different methods and principal co-ordinate analysis (PCO), based on the AFLP data from 496 polymorphic bands generated with five primer combinations, was performed. The resulted grouping of accessions of each species corresponds largely with their taxonomic classifications and were found to be consistent with other studies based on RAPD, isozyme and cpDNA data. The AFLP analysis supports the recent rehabilitation of the Vasconcella group as a genus; until recently Vasconcella was considered as a section within the genus Carica. Both cluster and PCO analysis clearly separated the species of the three genera and illustrated the large genetic distance between C. papaya accessions and the Vasconcella group. The specific clustering of the highly diverse group of Vasconcella × heilbornii accessions also suggests that these genotypes may be the result of bi-directional introgression events between Vasconcella stipulata and Vasconcella cundinamarcensis.


International Journal for Parasitology | 2009

An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup.

Annelies Haegeman; Bartel Vanholme; Joachim Jacob; Tom Vandekerckhove; Myriam Claeys; Gaetan Borgonie; Godelieve Gheysen

Wolbachia is an endosymbiotic bacterium widely present in arthropods and animal-parasitic nematodes. Despite previous efforts, it has never been identified in plant-parasitic nematodes. Random sequencing of genes expressed by the burrowing nematode Radopholus similis resulted in several sequences with similarity to Wolbachia genes. The presence of a Wolbachia-like endosymbiont in this plant-parasitic nematode was investigated using both morphological and molecular approaches. Transmission electronmicroscopy, fluorescent immunolocalisation and staining with DAPI confirmed the presence of the endosymbiont within the reproductive tract of female adults. 16S rDNA, ftsZ and groEL gene sequences showed that the endosymbiont of R. similis is distantly related to the known Wolbachia supergroups. Finally, based on our initial success in finding sequences of this endosymbiont by screening an expressed sequence tag (EST) dataset, all nematode ESTs were mined for Wolbachia-like sequences. Although the retained sequences belonged to six different nematode species, R. similis was the only plant-parasitic nematode with traces of Wolbachia. Based on our phylogenetic study and the current literature we designate the endosymbiont of R. similis to a new supergroup (supergroup I) rather than considering it as a new species. Although its role remains unknown, the endosymbiont was found in all individuals tested, pointing towards an essential function of the bacteria.


Molecular Plant-microbe Interactions | 1995

Characterization of a pathogen-induced potato catalase and its systemic expression upon nematode and bacterial infection

Andreas Niebel; Kurt Heungens; Nathalie Barthels; Dirk Inzé; Marc Van Montagu; Godelieve Gheysen

We have isolated a cDNA encoding a catalase (Cat2St) by differential screening of a cDNA library constructed from potato roots infected with the cyst nematode Globodera pallida. Expression analysis confirmed the local induction of Cat2St and showed that it was highest at the adult stage of the parasite. It also revealed that Cat2St was induced in uninfected roots, stems, and leaves of infected plants. Localized and systemic induction of Cat2St was also observed upon root-knot nematode (Meloidogyne incognita) and root bacteria (Erwinia carotovora, Corynebacterium sepedonicum) infections. Based on sequence and expression analysis, Cat2St was found to belong to the recently described class II of dicotyledonous catalases, suggesting that these catalase isoforms could also be pathogen induced. Plant-parasitic nematodes are known to induce, in the roots of their hosts, highly metabolic feeding cells that function as nutritional sinks. Whereas the local induction of Cat2St is probably a consequence of an oxidative stress of metabolic nature, the systemic induction of Cat2St shows striking similarities with the induction of systemic acquired resistance (SAR) genes. The possible role of catalase in compatible plant-pathogen interactions is discussed.


New Phytologist | 2012

Transcriptional reprogramming by root knot and migratory nematode infection in rice

Tina Kyndt; Simon Denil; Annelies Haegeman; Geert Trooskens; Lander Bauters; Wim Van Criekinge; Tim De Meyer; Godelieve Gheysen

Rice is one of the most important staple crops worldwide, but its yield is compromised by different pathogens, including plant-parasitic nematodes. In this study we have characterized specific and general responses of rice (Oryza sativa) roots challenged with two endoparasitic nematodes with very different modes of action. Local transcriptional changes in rice roots upon root knot (Meloidogyne graminicola) and root rot nematode (RRN, Hirschmanniella oryzae) infection were studied at two time points (3 and 7 d after infection, dai), using mRNA-seq. Our results confirm that root knot nematodes (RKNs), which feed as sedentary endoparasites, stimulate metabolic pathways in the root, and enhance nutrient transport towards the induced root gall. The migratory RRNs, on the other hand, induce programmed cell death and oxidative stress, and obstruct the normal metabolic activity of the root. While RRN infection causes up-regulation of biotic stress-related genes early in the infection, the sedentary RKNs suppress the local defense pathways (e.g. salicylic acid and ethylene pathways). Interestingly, hormone pathways mainly involved in plant development were strongly induced (gibberellin) or repressed (cytokinin) at 3 dai. These results uncover previously unrecognized nematode-induced expression profiles related to their specific infection strategy.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis

Wim Grunewald; Ive De Smet; Daniel R. Lewis; Christian Löfke; Leentje Jansen; Geert Goeminne; Robin Vanden Bossche; Mansour Karimi; Bert De Rybel; Bartel Vanholme; Thomas Teichmann; Wout Boerjan; Marc Van Montagu; Godelieve Gheysen; Gloria K. Muday; Jiří Friml; Tom Beeckman

Gradients of the plant hormone auxin, which depend on its active intercellular transport, are crucial for the maintenance of root meristematic activity. This directional transport is largely orchestrated by a complex interaction of specific influx and efflux carriers that mediate the auxin flow into and out of cells, respectively. Besides these transport proteins, plant-specific polyphenolic compounds known as flavonols have been shown to act as endogenous regulators of auxin transport. However, only limited information is available on how flavonol synthesis is developmentally regulated. Using reduction-of-function and overexpression approaches in parallel, we demonstrate that the WRKY23 transcription factor is needed for proper root growth and development by stimulating the local biosynthesis of flavonols. The expression of WRKY23 itself is controlled by auxin through the AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 transcriptional response pathway. Our results suggest a model in which WRKY23 is part of a transcriptional feedback loop of auxin on its own transport through local regulation of flavonol biosynthesis.


Molecular Plant-microbe Interactions | 2013

Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway

Kamrun Nahar; Tina Kyndt; Bettina Hause; Monica Höfte; Godelieve Gheysen

The importance of phytohormone balance is increasingly recognized as central to the outcome of plant-pathogen interactions. Next to their well-known developmental role, brassinosteroids (BR) were recently found to be involved in plant innate immunity. In this study, we examined the role of BR in rice (Oryza sativa) innate immunity during infection with the root-knot nematode Meloidogyne graminicola, and we studied the inter-relationship with the jasmonate (JA) pathway. Exogenous epibrassinolide (BL) supply at low concentrations induced susceptibility in the roots whereas high concentrations of BL enforced systemic defense against this nematode. Upon high exogenous BL supply on the shoot, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) confirmed a strong feedback inhibitory effect, leading to reduced BR biosynthesis in the root. Moreover, we demonstrate that the immune suppressive effect of BR is at least partly due to negative cross-talk with the JA pathway. Mutants in the BR biosynthesis or signaling pathway accumulate slightly higher levels of the immediate JA-precursor 12-oxo-phytodienoic acid, and qRT-PCR data showed that the BR and JA pathway are mutually antagonistic in rice roots. Collectively, these results suggest that the balance between the BR and JA pathway is an effective regulator of the outcome of the rice-M. graminicola interaction.

Collaboration


Dive into the Godelieve Gheysen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Niebel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge