Godfrey Grech
University of Malta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Godfrey Grech.
Nature Genetics | 2010
Joseph A. Borg; Petros Papadopoulos; Marianthi Georgitsi; Laura Gutierrez; Godfrey Grech; Pavlos Fanis; Marios Phylactides; Annemieke J. M. H. Verkerk; Peter J. van der Spek; Christian Scerri; Wilhelmina Cassar; Ruth Galdies; Wilfred van IJcken; Zeliha Ozgur; Nynke Gillemans; Jun Hou; Marisa Bugeja; Frank Grosveld; Marieke von Lindern; Alex E. Felice; George P. Patrinos; Sjaak Philipsen
Hereditary persistence of fetal hemoglobin (HPFH) is characterized by persistent high levels of fetal hemoglobin (HbF) in adults. Several contributory factors, both genetic and environmental, have been identified but others remain elusive. HPFH was found in 10 of 27 members from a Maltese family. We used a genome-wide SNP scan followed by linkage analysis to identify a candidate region on chromosome 19p13.12–13. Sequencing revealed a nonsense mutation in the KLF1 gene, p.K288X, which ablated the DNA-binding domain of this key erythroid transcriptional regulator. Only family members with HPFH were heterozygous carriers of this mutation. Expression profiling on primary erythroid progenitors showed that KLF1 target genes were downregulated in samples from individuals with HPFH. Functional assays suggested that, in addition to its established role in regulating adult globin expression, KLF1 is a key activator of the BCL11A gene, which encodes a suppressor of HbF expression. These observations provide a rationale for the effects of KLF1 haploinsufficiency on HbF levels.
Nucleic Acids Research | 2008
Ana Rita Grosso; Anita Quintal Gomes; Nuno L. Barbosa-Morais; Sandra Caldeira; Natalie P. Thorne; Godfrey Grech; Marieke von Lindern; Maria Carmo-Fonseca
The alternative splicing code that controls and coordinates the transcriptome in complex multicellular organisms remains poorly understood. It has long been argued that regulation of alternative splicing relies on combinatorial interactions between multiple proteins, and that tissue-specific splicing decisions most likely result from differences in the concentration and/or activity of these proteins. However, large-scale data to systematically address this issue have just recently started to become available. Here we show that splicing factor gene expression signatures can be identified that reflect cell type and tissue-specific patterns of alternative splicing. We used a computational approach to analyze microarray-based gene expression profiles of splicing factors from mouse, chimpanzee and human tissues. Our results show that brain and testis, the two tissues with highest levels of alternative splicing events, have the largest number of splicing factor genes that are most highly differentially expressed. We further identified SR protein kinases and small nuclear ribonucleoprotein particle (snRNP) proteins among the splicing factor genes that are most highly differentially expressed in a particular tissue. These results indicate the power of generating signature-based predictions as an initial computational approach into a global view of tissue-specific alternative splicing regulation.
The Epma Journal | 2015
Godfrey Grech; Xianquan Zhan; Byong Chul Yoo; Rostyslav V Bubnov; Suzanne Hagan; Romano Danesi; Giorgio Vittadini; Dominic M. Desiderio
At present, a radical shift in cancer treatment is occurring in terms of predictive, preventive, and personalized medicine (PPPM). Individual patients will participate in more aspects of their healthcare. During the development of PPPM, many rapid, specific, and sensitive new methods for earlier detection of cancer will result in more efficient management of the patient and hence a better quality of life. Coordination of the various activities among different healthcare professionals in primary, secondary, and tertiary care requires well-defined competencies, implementation of training and educational programs, sharing of data, and harmonized guidelines. In this position paper, the current knowledge to understand cancer predisposition and risk factors, the cellular biology of cancer, predictive markers and treatment outcome, the improvement in technologies in screening and diagnosis, and provision of better drug development solutions are discussed in the context of a better implementation of personalized medicine. Recognition of the major risk factors for cancer initiation is the key for preventive strategies (EPMA J. 4(1):6, 2013). Of interest, cancer predisposing syndromes in particular the monogenic subtypes that lead to cancer progression are well defined and one should focus on implementation strategies to identify individuals at risk to allow preventive measures and early screening/diagnosis. Implementation of such measures is disturbed by improper use of the data, with breach of data protection as one of the risks to be heavily controlled. Population screening requires in depth cost-benefit analysis to justify healthcare costs, and the parameters screened should provide information that allow an actionable and deliverable solution, for better healthcare provision.
Molecular and Cellular Biology | 2005
Montserrat Blázquez-Domingo; Godfrey Grech; Marieke von Lindern
ABSTRACT Stem cell factor (SCF) delays differentiation and enhances the expansion of erythroid progenitors. Previously, we performed expression-profiling experiments to link signaling pathways to target genes using polysome-bound mRNA. SCF-induced phosphoinositide-3-kinase (PI3K) appeared to control polysome recruitment of specific mRNAs associated with neoplastic transformation. To evaluate the role of mRNA translation in the regulation of expansion versus differentiation of erythroid progenitors, we examined the function of the eukaryote initiation factor 4E (eIF4E) in these cells. SCF induced a rapid and complete phosphorylation of eIF4E-binding protein (4E-BP). Overexpression of eIF4E did not induce factor-independent growth but specifically impaired differentiation into mature erythrocytes. Overexpression of eIF4E rendered polysome recruitment of mRNAs with structured 5′ untranslated regions largely independent of growth factor and resistant to the PI3K inhibitor LY294002. In addition, overexpression of eIF4E rendered progenitors insensitive to the differentiation-inducing effect of LY294002, indicating that control of mRNA translation is a major pathway downstream of PI3K in the regulation of progenitor expansion.
Blood | 2008
Godfrey Grech; Montserrat Blázquez-Domingo; Andrea Kolbus; Walter Jacob Bakker; Ernst W. Müllner; Hartmut Beug; Marieke von Lindern
Stem cell factor (SCF)-induced activation of phosphoinositide-3-kinase (PI3K) is required for transient amplification of the erythroblast compartment. PI3K stimulates the activation of mTOR (target of rapamycin) and subsequent release of the cap-binding translation initiation factor 4E (eIF4E) from the 4E-binding protein 4EBP, which controls the recruitment of structured mRNAs to polysomes. Enhanced expression of eIF4E renders proliferation of erythroblasts independent of PI3K. To investigate which mRNAs are selectively recruited to polysomes, we compared SCF-dependent gene expression between total and polysome-bound mRNA. This identified 111 genes primarily subject to translational regulation. For 8 of 9 genes studied in more detail, the SCF-induced polysome recruitment of transcripts exceeded 5-fold regulation and was PI3K-dependent and eIF4E-sensitive, whereas total mRNA was not affected by signal transduction. One of the targets, Immunoglobulin binding protein 1 (Igbp1), is a regulatory subunit of protein phosphatase 2A (Pp2a) sustaining mTOR signaling. Constitutive expression of Igbp1 impaired erythroid differentiation, maintained 4EBP and p70S6k phosphorylation, and enhanced polysome recruitment of multiple eIF4E-sensitive mRNAs. Thus, PI3K-dependent polysome recruitment of Igbp1 acts as a positive feedback mechanism on translation initiation underscoring the important regulatory role of selective mRNA recruitment to polysomes in the balance between proliferation and maturation of erythroblasts.
The Epma Journal | 2014
Shawn Baldacchino; Christian Saliba; Vanessa Petroni; Anthony G. Fenech; Nigel Borg; Godfrey Grech
BackgroundThe most commonly used biomarkers to predict the response of breast cancer patients to therapy are the oestrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 (HER2). Patients positive for these biomarkers are eligible for specific therapies such as endocrine treatment in the event of ER and PgR positivity, and the monoclonal antibody, trastuzumab, in the case of HER2-positive patients. Patients who are negative for these three biomarkers, the so-called triple negatives, however, derive little benefit from such therapies and are associated with a worse prognosis. Deregulation of the protein serine/threonine phosphatase type 2A (PP2A) and its regulatory subunits is a common event in breast cancer, providing a possible target for therapy.MethodsThe data portal, cBioPortal for Cancer Genomics was used to investigate the incidence of conditions that are associated with low phosphatase activity. Four (4) adherent human breast cancer cell lines, MDA-MB-468, MDA-MB-436, Hs578T and BT-20 were cultured to assess their viability when exposed to various dosages of rapamycin or FTY720. In addition, RNA was extracted and cDNA was synthesised to amplify the coding sequence of PPP2CA. Amplification was followed by high-resolution melting to identify variations.Results and conclusionThe sequence of PPP2CA was found to be conserved across a diverse panel of solid tumour and haematological cell lines, suggesting that low expression of PPP2CA and differential binding of inhibitory PPP2CA regulators are the main mechanisms of PP2A deregulation. Interestingly, the cBioPortal for Cancer Genomics shows that PP2A is deregulated in 59.6% of basal breast tumours. Viability assays performed to determine the sensitivity of a panel of breast cancer cell lines to FTY720, a PP2A activator, indicated that cell lines associated with ER loss are sensitive to lower doses of FTY720. The subset of patients with suppressed PP2A activity is potentially eligible for treatment using therapies which target the PI3K/AKT/mTOR pathway, such as phosphatase activators.
PLOS ONE | 2016
Clint Mizzi; Eleni Dalabira; Judit Kumuthini; Nduna Dzimiri; Istvan Balogh; Nazli Basak; Ruwen Böhm; Joseph A. Borg; Paola Borgiani; Nada Bozina; Henrike Bruckmueller; Beata Burzynska; Angel Carracedo; Ingolf Cascorbi; Constantinos Deltas; Vita Dolzan; Anthony G. Fenech; Godfrey Grech; Vytautas Kasiulevičius; Ľudevít Kádaši; Vaidutis Kučinskas; Elza Khusnutdinova; Yiannis L. Loukas; Milan Macek; Halyna Makukh; Ron H.J. Mathijssen; Konstantinos Mitropoulos; Christina Mitropoulou; Giuseppe Novelli; Ioanna Papantoni
Pharmacogenomics aims to correlate inter-individual differences of drug efficacy and/or toxicity with the underlying genetic composition, particularly in genes encoding for protein factors and enzymes involved in drug metabolism and transport. In several European populations, particularly in countries with lower income, information related to the prevalence of pharmacogenomic biomarkers is incomplete or lacking. Here, we have implemented the microattribution approach to assess the pharmacogenomic biomarkers allelic spectrum in 18 European populations, mostly from developing European countries, by analyzing 1,931 pharmacogenomics biomarkers in 231 genes. Our data show significant inter-population pharmacogenomic biomarker allele frequency differences, particularly in 7 clinically actionable pharmacogenomic biomarkers in 7 European populations, affecting drug efficacy and/or toxicity of 51 medication treatment modalities. These data also reflect on the differences observed in the prevalence of high-risk genotypes in these populations, as far as common markers in the CYP2C9, CYP2C19, CYP3A5, VKORC1, SLCO1B1 and TPMT pharmacogenes are concerned. Also, our data demonstrate notable differences in predicted genotype-based warfarin dosing among these populations. Our findings can be exploited not only to develop guidelines for medical prioritization, but most importantly to facilitate integration of pharmacogenomics and to support pre-emptive pharmacogenomic testing. This may subsequently contribute towards significant cost-savings in the overall healthcare expenditure in the participating countries, where pharmacogenomics implementation proves to be cost-effective.
Tumor Biology | 2016
Godfrey Grech; Shawn Baldacchino; Christian Saliba; Maria Pia Grixti; Robert Gauci; Vanessa Petroni; Anthony G. Fenech; Christian Scerri
The complexity of the phosphatase, PP2A, is being unravelled and current research is increasingly providing information on the association of deregulated PP2A function with cancer initiation and progression. It has been reported that decreased activity of PP2A is a recurrent observation in many types of cancer, including colorectal and breast cancer (Baldacchino et al. EPMA J. 5:3, 2014; Cristobal et al. Mol Cancer Ther. 13:938–947, 2014). Since deregulation of PP2A and its regulatory subunits is a common event in cancer, PP2A is a potential target for therapy (Baldacchino et al. EPMA J. 5:3, 2014). In this review, the structural components of the PP2A complex are described, giving an in depth overview of the diversity of regulatory subunits. Regulation of the active PP2A trimeric complex, through phosphorylation and methylation, can be targeted using known compounds, to reactivate the complex. The endogenous inhibitors of the PP2A complex are highly deregulated in cancer, representing cases that are eligible to PP2A-activating drugs. Pharmacological opportunities to target low PP2A activity are available and preclinical data support the efficacy of these drugs, but clinical trials are lacking. We highlight the importance of PP2A deregulation in cancer and the current trends in targeting the phosphatase.
Journal of The International Society of Sports Nutrition | 2015
Joseph N. Sciberras; Stuart D.R. Galloway; Anthony G. Fenech; Godfrey Grech; Claude Farrugia; Deborah Duca; Janet Mifsud
BackgroundEndurance exercise induces IL-6 production from myocytes that is thought to impair intracellular defence mechanisms. Curcumin inhibits NF-κB and activator protein 1, responsible for cytokine transcription, in cell lines. The aim of this study was to investigate the effect of curcumin supplementation on the cytokine and stress responses following 2 h of cycling.MethodsEleven male recreational athletes (35.5 ± 5.7 years; Wmax 275 ± 6 W; 87.2 ± 10.3 kg) consuming a low carbohydrate diet of 2.3 ± 0.2 g/kg/day underwent three double blind trials with curcumin supplementation, placebo supplementation, and no supplementation (control) to observe the response of serum interleukins (IL-6, IL1-RA, IL-10), cortisol, c-reactive protein (CRP), and subjective assessment of training stress. Exercise was set at 95% lactate threshold (54 ± 7% Wmax) to ensure that all athletes completed the trial protocol.ResultsThe trial protocol elicted a rise in IL-6 and IL1-RA, but not IL-10. The supplementation regimen failed to produce statistically significant results when compared to placebo and control. IL-6 serum concentrations one hour following exercise were (Median (IQR): 2.0 (1.8-3.6) Curcumin; 4.8 (2.1-7.3) Placebo; 3.5 (1.9-7.7) Control). Differences between supplementation and placebo failed to reach statistical significance (p = 0.18) with the median test. Repeated measures ANOVA time-trial interaction was at p = 0.06 between curcumin supplementation and placebo. A positive correlation (p = 0.02) between absolute exercise intensity and 1 h post-exercise for IL-6 concentration was observed. Participants reported “better than usual” scores in the subjective assessment of psychological stress when supplementing with curcumin, indicating that they felt less stressed during training days (p = 0.04) compared to placebo even though there was no difference in RPE during any of the training days or trials.ConclusionThe limitations of the current regimen and trial involved a number of factors including sample size, mode of exercise, intensity of exercise, and dose of curcumin. Nevertheless these results provide insight for future studies with larger samples, and multiple curcumin dosages to investigate if different curcumin regimens can lead to statistically different interleukin levels when compared to a control and placebo.
Oncotarget | 2017
Rosa Drago-Ferrante; Francesca Pentimalli; Daniela Carlisi; Anna De Blasio; Christian Saliba; Shawn Baldacchino; James DeGaetano; Joseph Debono; Gordon Caruana-Dingli; Godfrey Grech; Christian Scerri; Giovanni Tesoriere; Antonio Giordano; Renza Vento; Riccardo Di Fiore
MiR-29 family dysregulation occurs in various cancers including breast cancers. We investigated miR-29b-1 functional role in human triple negative breast cancer (TNBC) the most aggressive breast cancer subtype. We found that miR-29b-1-5p was downregulated in human TNBC tissues and cell lines. To assess whether miR-29b-1-5p correlated with TNBC regenerative potential, we evaluated cancer stem cell enrichment in our TNBC cell lines, and found that only MDA-MB-231 and BT-20 produced primary, secondary and tertiary mammospheres, which were progressively enriched in OCT4, NANOG and SOX2 stemness genes. MiR-29b-1-5p expression inversely correlated with mammosphere stemness potential, and miR-29b-1 ectopic overexpression decreased TNBC cell growth, self-renewal, migration, invasiveness and paclitaxel resistance repressing WNT/βcatenin and AKT signaling pathways and stemness regulators. We identified SPINDLIN1 (SPIN1) among predicted miR-29b-1-5p targets. Consistently, SPIN1 was overexpressed in most TNBC tissues and cell lines and negatively correlated with miR-29b-1-5p. Target site inhibition showed that SPIN1 seems to be directly controlled by miR-29b-1-5p. Silencing SPIN1 mirrored the effects triggered by miR-29b-1 overexpression, whereas SPIN1 rescue by SPIN1miScript protector, determined the reversal of the molecular effects produced by the mimic-miR-29b-1-5p. Overall, we show that miR-29b-1 deregulation impacts on multiple oncogenic features of TNBC cells and their renewal potential, acting, at least partly, through SPIN1, and suggest that both these factors should be evaluated as new possible therapeutic targets against TNBC.