Godfrey L. Smith
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Godfrey L. Smith.
Circulation | 2007
Ulrik Wisløff; Asbjørn Støylen; Jan P. Loennechen; Morten Bruvold; Øivind Rognmo; Per Magnus Haram; Arnt Erik Tjønna; Jan Helgerud; Stig A. Slørdahl; Sang Jun Lee; Vibeke Videm; Anja Bye; Godfrey L. Smith; Sonia M. Najjar; Øyvind Ellingsen; Terje Skjærpe
Background— Exercise training reduces the symptoms of chronic heart failure. Which exercise intensity yields maximal beneficial adaptations is controversial. Furthermore, the incidence of chronic heart failure increases with advanced age; it has been reported that 88% and 49% of patients with a first diagnosis of chronic heart failure are >65 and >80 years old, respectively. Despite this, most previous studies have excluded patients with an age >70 years. Our objective was to compare training programs with moderate versus high exercise intensity with regard to variables associated with cardiovascular function and prognosis in patients with postinfarction heart failure. Methods and Results— Twenty-seven patients with stable postinfarction heart failure who were undergoing optimal medical treatment, including &bgr;-blockers and angiotensin-converting enzyme inhibitors (aged 75.5±11.1 years; left ventricular [LV] ejection fraction 29%; &OV0312;o2peak 13 mL · kg−1 · min−1) were randomized to either moderate continuous training (70% of highest measured heart rate, ie, peak heart rate) or aerobic interval training (95% of peak heart rate) 3 times per week for 12 weeks or to a control group that received standard advice regarding physical activity. &OV0312;o2peak increased more with aerobic interval training than moderate continuous training (46% versus 14%, P<0.001) and was associated with reverse LV remodeling. LV end-diastolic and end-systolic volumes declined with aerobic interval training only, by 18% and 25%, respectively; LV ejection fraction increased 35%, and pro-brain natriuretic peptide decreased 40%. Improvement in brachial artery flow-mediated dilation (endothelial function) was greater with aerobic interval training, and mitochondrial function in lateral vastus muscle increased with aerobic interval training only. The MacNew global score for quality of life in cardiovascular disease increased in both exercise groups. No changes occurred in the control group. Conclusions— Exercise intensity was an important factor for reversing LV remodeling and improving aerobic capacity, endothelial function, and quality of life in patients with postinfarction heart failure. These findings may have important implications for exercise training in rehabilitation programs and future studies.
Cardiovascular Research | 2001
Ulrik Wisløff; Jan P. Loennechen; Geir Falck; Vidar Beisvag; Susan Currie; Godfrey L. Smith; Øyvind Ellingsen
OBJECTIVE Regular exercise enhances cardiac function and modulates myocyte growth in healthy individuals. The purpose of the present study was to assess contractile function and expression of selected genes associated with intracellular Ca2+ regulation after intensity controlled aerobic endurance training in the rat. METHODS Female Sprague-Dawley rats were randomly assigned to sedentary control (SED) or treadmill running (TR) 2 h per day, 5 days per week for 2, 4 or 13 weeks. Rats ran 8-min intervals at 85-90% of VO2max separated by 2 min at 50-60%. Myocyte length, intracellular Ca2+ (Fura-2), and intracellular pH (BCECF) were measured in dissociated cells in response to electrical stimulation at a range of stimulation rates. RESULTS The increase in VO2max plateaued after 6-8 weeks, 60% above SED. After 13 weeks, left and right ventricular weights were 39 and 36% higher than in SED. Left ventricular myocytes were 13% longer, whereas width remained unchanged. After 4 weeks training, myocyte contractility was approximately 20% higher in TR. Peak systolic intracellular Ca2+ and time for the decay from systole were 20-35 and 12-17% lower, respectively. These results suggest that increased myofilament Ca2+ sensitivity is the dominant effect responsible for enhanced myocyte contractility in TR. Intracellular pH progressively decreased as stimulation frequency was increased in the SED group. This decrease was markedly attenuated in TR and the intracellular pH was significantly higher in the TR group at a stimulation rate of 5-10 Hz. This effect may contribute to the increased contractility observed at the higher stimulation frequencies in TR. A higher intrinsic myofilament Ca2+ sensitivity was observed in permeabilised myocytes from the TR group under conditions of constant pH and [Ca2+]. Western blot analysis indicated 21 and 46% higher myocardial SERCA-2 and phospholamban, but unaltered Na+/Ca(2+)-exchanger levels. Competitive RT-PCR revealed that TR significantly increased Na+/H(+)-exchanger mRNA. CONCLUSION Intensity controlled interval training increases cardiomyocyte contractility. Higher myofilament Ca(2+)-sensitivity, and enhanced Ca(2+)-handling and pH-regulation are putative mechanisms. Our results suggest that physical exercise induces adaptive hypertrophy in cardiac myocytes with improved contractile function.
Cardiovascular Research | 2002
Ulrik Wisløff; Jan P. Loennechen; Susan Currie; Godfrey L. Smith; Øyvind Ellingsen
OBJECTIVE Although it is generally accepted that endurance training improves cardiac function after myocardial infarction the sub-cellular mechanisms are uncertain. The present study reports the effects of aerobic endurance training on myocardial mass, myocyte dimensions, contractile function, Ca2+ handling, and myofilament responsiveness to Ca2+ in cardiomyocytes from healthy and failing rat hearts. METHODS Adult female Sprague-Dawley rats ran on a treadmill 1.5 h/day, 5 days a week for 8 weeks. Exercise intervals alternated between 8 min at 85-90% of V(O(2max)) and 2 min at 50-60%. Training started 4 weeks after ligation of the left coronary artery (TR-INF, n=11) or sham operation (TR-SHAM, n=6). Sedentary animals (SED-SHAM, n=6; SED-INF, n=13) were controls. RESULTS After 6 weeks V(O(2max)) in TR-INF and TR-SHAM leveled off 65% above sedentary controls. In TR-SHAM, left and right ventricle weights were approximately 25% higher than in SED-SHAM, myocytes were approximately 13% longer; width remained unchanged. At physiological stimulation frequencies, relative myocyte shortening was markedly higher whereas peak systolic [Ca2+] and t(1/2) of Ca2+ transient decay were 10-20% lower, indicating higher Ca2+ sensitivity in cardiomyocytes from trained rats, compared to respective controls. In TR-INF the left and right ventricular weights, and myocyte length and width were 15, 23, 12, and 20% less than in SED-INF. Endurance training significantly increased the myocardial SR Ca2+ pump (SERCA-2) and sarcolemmal Na+-Ca2+-exchanger (NCX) protein levels to the extent that TR-INF did not differ from SED-SHAM. CONCLUSION This is the first study to show that aerobic endurance training attenuates the ventricular and cellular hypertrophy in failing hearts. Furthermore, training consistently restores contractile function, intracellular Ca2+ handling, and Ca2+-sensitivity in cardiomyocytes from rats with myocardial infarction.
Journal of Cellular Physiology | 2008
Ole Johan Kemi; Marcello Ceci; Ulrik Wisløff; Serena Grimaldi; Paolo Gallo; Godfrey L. Smith; Gianluigi Condorelli; Øyvind Ellingsen
Cardiomyocyte hypertrophy differs according to the stress exerted on the myocardium. While pressure overload‐induced cardiomyocyte hypertrophy is associated with depressed contractile function, physiological hypertrophy after exercise training associates with preserved or increased inotropy. We determined the activation state of myocardial Akt signaling with downstream substrates and fetal gene reactivation in exercise‐induced physiological and pressure overload‐induced pathological hypertrophies. C57BL/6J mice were either treadmill trained for 6 weeks, 5 days/week, at 85–90% of maximal oxygen uptake (VO2max), or underwent transverse aortic constriction (TAC) for 1 or 8 weeks. Total and phosphorylated protein levels were determined with SDS‐PAGE, and fetal genes by real‐time RT‐PCR. In the physiologically hypertrophied heart after exercise training, total Akt protein level was unchanged, but Akt was chronically hyperphosphorylated at serine 473. This was accompanied by activation of the mammalian target of rapamycin (mTOR), measured as phosphorylation of its two substrates: the ribosomal protein S6 kinase‐1 (S6K1) and the eukaryotic translation initiation factor‐4E binding protein‐1 (4E‐BP1). Exercise training did not reactivate the fetal gene program (β‐myosin heavy chain, atrial natriuretic factor, skeletal muscle actin). In contrast, pressure overload after TAC reactivated fetal genes already after 1 week, and partially inactivated the Akt/mTOR pathway and downstream substrates after 8 weeks. In conclusion, changes in opposite directions of the myocardial Akt/mTOR signal pathway appears to distinguish between physiological and pathological hypertrophies; exercise training associating with activation and pressure overload associating with inactivation of the Akt/mTOR pathway. J. Cell. Physiol. 214: 316–321, 2008.
Circulation Research | 2001
J. Prestle; Paul M. L. Janssen; Anita P. Janssen; Oliver Zeitz; Stephan E. Lehnart; Lorraine Bruce; Godfrey L. Smith; Gerd Hasenfuss
Abstract — The FK506-binding protein FKBP12.6 is tightly associated with the cardiac sarcoplasmic reticulum (SR) Ca2+-release channel (ryanodine receptor type 2 [RyR2]), but the physiological function of FKBP12.6 is unclear. We used adenovirus (Ad)-mediated gene transfer to overexpress FKBP12.6 in adult rabbit cardiomyocytes. Western immunoblot and reverse transcriptase–polymerase chain reaction analysis revealed specific overexpression of FKBP12.6, with unchanged expression of endogenous FKBP12. FKBP12.6-transfected myocytes displayed a significantly higher (21%) fractional shortening (FS) at 48 hours after transfection compared with Ad-GFP–infected control cells (4.8±0.2% FS versus 4±0.2% FS, respectively; n=79 each;P =0.001). SR-Ca2+ uptake rates were monitored in &bgr;-escin–permeabilized myocytes using Fura-2. Ad-FKBP12.6–infected cells showed a statistically significant higher rate of Ca2+ uptake of 0.8±0.09 nmol/s−1/106 cells (n=8, P <0.05) compared with 0.52±0.1 nmol/s−1/106 cells in sham-infected cells (n=8) at a [Ca2+] of 1 &mgr;mol/L. In the presence of 5 &mgr;mol/L ruthenium red to block Ca2+ efflux via RyR2, SR-Ca2+ uptake rates were not significantly different between groups. From these measurements, we calculate that SR-Ca2+ leak through RyR2 is reduced by 53% in FKBP12.6-overexpressing cells. Caffeine-induced contractures were significantly larger in Ad-FKBP12.6–infected myocytes compared with Ad-GFP–infected control cells, indicating a higher SR-Ca2+ load. Taken together, these data suggest that FKBP12.6 stabilizes the closed conformation state of RyR2. This may reduce diastolic SR-Ca2+ leak and consequently increase SR-Ca2+ release and myocyte shortening.
Circulation Research | 2009
Tomas Stølen; Morten Høydal; Ole Johan Kemi; Daniele Catalucci; Marcello Ceci; Ellen Aasum; Terje S. Larsen; Natale Rolim; Gianluigi Condorelli; Godfrey L. Smith; Ulrik Wisløff
Rationale: In the present study we explored the mechanisms behind excitation–contraction (EC) coupling defects in cardiomyocytes from mice with type-2 diabetes (db/db). Objective: We determined whether 13 weeks of aerobic interval training could restore cardiomyocyte Ca2+ cycling and EC coupling. Methods and Results: Reduced contractility in cardiomyocytes isolated from sedentary db/db was associated with increased diastolic sarcoplasmic reticulum (SR)-Ca2+ leak, reduced synchrony of Ca2+ release, reduced transverse (T)-tubule density, and lower peak systolic and diastolic Ca2+ and caffeine-induced Ca2+ release. Additionally, the rate of SR Ca2+ ATPase–mediated Ca2+ uptake during diastole was reduced, whereas a faster recovery from caffeine-induced Ca2+ release indicated increased Na+/Ca2+-exchanger activity. The increased SR-Ca2+ leak was attributed to increased Ca2+-calmodulin–dependent protein kinase (CaMKII&dgr;) phosphorylation, supported by the normalization of SR-Ca2+ leak on inhibition of CaMKII&dgr; (AIP). Exercise training restored contractile function associated with restored SR Ca2+ release synchronicity, T-tubule density, twitch Ca2+ amplitude, SR Ca2+ ATPase and Na+/Ca2+-exchanger activities, and SR-Ca2+ leak. The latter was associated with reduced phosphorylation of cytosolic CaMKII&dgr;. Despite normal contractile function and Ca2+ handling after the training period, phospholamban was hyperphosphorylated at Serine-16. Protein kinase A inhibition (H-89) in cardiomyocytes from the exercised db/db group abolished the differences in SR-Ca2+ load when compared with the sedentary db/db mice. EC coupling changes were observed without changes in serum insulin or glucose levels, suggesting that the exercise training–induced effects are not via normalization of the diabetic condition. Conclusions: These data demonstrate that aerobic interval training almost completely restored the contractile function of the diabetic cardiomyocyte to levels close to sedentary wild type.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Patrick Most; Philipp Ehlermann; Sven T. Pleger; Michael Reppel; Melanie Börries; Ferraydoon Niroomand; Burkert Pieske; Paul M. L. Janssen; Thomas Eschenhagen; Peter Karczewski; Godfrey L. Smith; Walter J. Koch; Hugo A. Katus; Andrew Remppis
S100A1, a Ca2+ binding protein of the EF-hand type, is preferentially expressed in myocardial tissue and has been found to colocalize with the sarcoplasmic reticulum (SR) and the contractile filaments in cardiac tissue. Because S100A1 is known to modulate SR Ca2+ handling in skeletal muscle, we sought to investigate the specific role of S100A1 in the regulation of myocardial contractility. To address this issue, we investigated contractile properties of adult cardiomyocytes as well as of engineered heart tissue after S100A1 adenoviral gene transfer. S100A1 gene transfer resulted in a significant increase of unloaded shortening and isometric contraction in isolated cardiomyocytes and engineered heart tissues, respectively. Analysis of intracellular Ca2+ cycling in S100A1-overexpressing cardiomyocytes revealed a significant increase in cytosolic Ca2+ transients, whereas in functional studies on saponin-permeabilized adult cardiomyocytes, the addition of S100A1 protein significantly enhanced SR Ca2+ uptake. Moreover, in Triton-skinned ventricular trabeculae, S100A1 protein significantly decreased myofibrillar Ca2+ sensitivity ([EC50%]) and Ca2+ cooperativity, whereas maximal isometric force remained unchanged. Our data suggest that S100A1 effects are cAMP independent because cellular cAMP levels and protein kinase A-dependent phosphorylation of phospholamban were not altered, and carbachol failed to suppress S100A1 actions. These results show that S100A1 overexpression enhances cardiac contractile performance and establish the concept of S100A1 as a regulator of myocardial contractility. S100A1 thus improves cardiac contractile performance both by regulating SR Ca2+ handling and myofibrillar Ca2+ responsiveness.
Circulation Research | 2011
Alessandra Stangherlin; F. Gesellchen; Anna Zoccarato; Anna Terrin; Laura Ashley Fields; Marco Berrera; Nicoletta C. Surdo; Margaret A. Craig; Godfrey L. Smith; Graham Hamilton; Manuela Zaccolo
Rationale: cAMP and cGMP are intracellular second messengers involved in heart pathophysiology. cGMP can potentially affect cAMP signals via cGMP-regulated phosphodiesterases (PDEs). Objective: To study the effect of cGMP signals on the local cAMP response to catecholamines in specific subcellular compartments. Methods and Results: We used real-time FRET imaging of living rat ventriculocytes expressing targeted cAMP and cGMP biosensors to detect cyclic nucleotides levels in specific locales. We found that the compartmentalized, but not the global, cAMP response to isoproterenol is profoundly affected by cGMP signals. The effect of cGMP is to increase cAMP levels in the compartment where the protein kinase (PK)A-RI isoforms reside but to decrease cAMP in the compartment where the PKA-RII isoforms reside. These opposing effects are determined by the cGMP-regulated PDEs, namely PDE2 and PDE3, with the local activity of these PDEs being critically important. The cGMP-mediated modulation of cAMP also affects the phosphorylation of PKA targets and myocyte contractility. Conclusions: cGMP signals exert opposing effects on local cAMP levels via different PDEs the activity of which is exerted in spatially distinct subcellular domains. Inhibition of PDE2 selectively abolishes the negative effects of cGMP on cAMP and may have therapeutic potential.
Biochemical Journal | 2004
Susan Currie; Christopher M. Loughrey; Margaret-Anne Craig; Godfrey L. Smith
Cardiac ryanodine receptors (RyR2s) play a critical role in excitation-contraction coupling by providing a pathway for the release of Ca(2+) from the sarcoplasmic reticulum into the cytosol. RyR2s exist as macromolecular complexes that are regulated via binding of Ca(2+) and protein phosphorylation/dephosphorylation. The present study examined the association of endogenous CaMKII (calcium/calmodulin-dependent protein kinase II) with the RyR2 complex and whether this enzyme could modulate RyR2 function in isolated rabbit ventricular myocardium. Endogenous phosphorylation of RyR2 was verified using phosphorylation site-specific antibodies. Co-immunoprecipitation studies established that RyR2 was physically associated with CaMKIIdelta. Quantitative assessment of RyR2 protein was performed by [(3)H]ryanodine binding to RyR2 immunoprecipitates. Parallel kinase assays allowed the endogenous CaMKII activity associated with these immunoprecipitates to be expressed relative to the amount of RyR2. The activity of RyR2 in isolated cardiac myocytes was measured in two ways: (i) RyR2-mediated Ca(2+) release (Ca(2+) sparks) using confocal microscopy and (ii) Ca(2+)-sensitive [(3)H]ryanodine binding. These studies were performed in the presence and absence of AIP (autocamtide-2-related inhibitory peptide), a highly specific inhibitor of CaMKII. At 1 microM AIP Ca(2+) spark duration, frequency and width were decreased significantly. Similarly, 1 microM AIP decreased [(3)H]ryanodine binding. At 5 microM AIP, a more profound inhibition of Ca(2+) sparks and a decrease in [(3)H]ryanodine binding was observed. Separate measurements showed that AIP (1-5 microM) did not affect sarcoplasmic reticulum Ca(2+)-ATPase-mediated Ca(2+) uptake. These results suggest the existence of an endogenous CaMKIIdelta that associates directly with RyR2 and specifically modulates RyR2 activity.
Biochimica et Biophysica Acta | 1985
Godfrey L. Smith; David Miller
The stoichiometric affinity constants of H+, Ca2+, Mg2+ and Sr+ for the ligand EGTA were determined using a modified version of the pH metric method developed by Moisescu and Pusch (Moisescu, D.G. and Pusch, H. (1975) Pfluegers Arch. 355, 243). The values obtained were slightly higher than those previously published. In addition, the shift in the H+ and Ca2+ stoichiometric constants with ionic strength was found to fit an empirical relationship if the total ionic content of the titration solutions was measured in terms of ionic equivalents, Ie (Johansson, L. (1975) Acta Chem. Scand. A29, 365-373), rather than the formal ionic strength, If. Finally, the apparent affinity of EGTA for Ca2+ ions was measured using an abbreviated form of the titration technique. The measured apparent affinity constant agreed with published results only if calculated with respect to pH (measured) of 7.0, rather than pH (concentration).
Collaboration
Dive into the Godfrey L. Smith's collaboration.
Strathclyde Institute of Pharmacy and Biomedical Sciences
View shared research outputs