Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gokhan Danabasoglu is active.

Publication


Featured researches published by Gokhan Danabasoglu.


Journal of Climate | 2004

The Community Climate System Model Version 4

Peter R. Gent; Gokhan Danabasoglu; Leo J. Donner; Marika M. Holland; Elizabeth C. Hunke; Steven R. Jayne; David M. Lawrence; Richard Neale; Philip J. Rasch; Mariana Vertenstein; Patrick H. Worley; Zong-Liang Yang; Minghua Zhang

AbstractThe fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1° results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4°-resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in CCSM4 producing El Nino–Southern Oscillation variability with a much more realistic frequency distribution than in CCSM3, although the amplitude is too large compared to observations. These changes also improve the Madden–Julian oscillation and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the Gulf Stream path and the North Atlantic Ocean meridional overturning circulati...


Bulletin of the American Meteorological Society | 2015

The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability

Jennifer E. Kay; Clara Deser; Adam S. Phillips; A Mai; Cecile Hannay; Gary Strand; Julie M. Arblaster; Susan C. Bates; Gokhan Danabasoglu; James Edwards; Marika M. Holland; Paul J. Kushner; Jean-Francois Lamarque; David M. Lawrence; Keith Lindsay; A Middleton; Ernesto Munoz; Richard Neale; Keith W. Oleson; Lorenzo M. Polvani; Mariana Vertenstein

AbstractWhile internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920–2100) 30 times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 1000+-yr-long preindu...


Journal of Physical Oceanography | 1997

Sensitivity to Surface Forcing and Boundary Layer Mixing in a Global Ocean Model: Annual-Mean Climatology

William G. Large; Gokhan Danabasoglu; Scott C. Doney; James C. McWilliams

Abstract The effects of more realistic bulk forcing boundary conditions, a more physical subgrid-scale vertical mixing parameterization, and more accurate bottom topography are investigated in a coarse-resolution, global oceanic general circulation model. In contrast to forcing with prescribed fluxes, the bulk forcing utilizes the evolving model sea surface temperatures and monthly atmospheric fields based on reanalyses by the National Centers for Environmental Prediction and on satellite data products. The vertical mixing in the oceanic boundary layer is governed by a nonlocal K-profile parameterization (KPP) and is matched to parameterizations of mixing in the interior. The KPP scheme is designed to represent well both convective and wind-driven entrainment. The near- equilibrium solutions are compared to a baseline experiment in which the surface tracers are strongly restored everywhere to climatology and the vertical mixing is conventional with constant coefficients, except where there is either conve...


Journal of Climate | 2012

The CCSM4 Ocean Component

Gokhan Danabasoglu; Susan C. Bates; Bruce P. Briegleb; Steven R. Jayne; Markus Jochum; William G. Large; Synte Peacock; Stephen Yeager

AbstractThe ocean component of the Community Climate System Model version 4 (CCSM4) is described, and its solutions from the twentieth-century (20C) simulations are documented in comparison with observations and those of CCSM3. The improvements to the ocean model physical processes include new parameterizations to represent previously missing physics and modifications of existing parameterizations to incorporate recent new developments. In comparison with CCSM3, the new solutions show some significant improvements that can be attributed to these model changes. These include a better equatorial current structure, a sharper thermocline, and elimination of the cold bias of the equatorial cold tongue all in the Pacific Ocean; reduced sea surface temperature (SST) and salinity biases along the North Atlantic Current path; and much smaller potential temperature and salinity biases in the near-surface Pacific Ocean. Other improvements include a global-mean SST that is more consistent with the present-day observa...


Bulletin of the American Meteorological Society | 2014

Decadal climate prediction: An update from the trenches

Gerald A. Meehl; Lisa M. Goddard; G. J. Boer; Robert J. Burgman; Grant Branstator; Christophe Cassou; Susanna Corti; Gokhan Danabasoglu; Francisco J. Doblas-Reyes; Ed Hawkins; Alicia Karspeck; Masahide Kimoto; Arun Kumar; Daniela Matei; Juliette Mignot; Rym Msadek; Antonio Navarra; Holger Pohlmann; Michele M. Rienecker; T. Rosati; Edwin K. Schneider; Doug Smith; Rowan Sutton; Haiyan Teng; Geert Jan van Oldenborgh; Gabriel A. Vecchi; Stephen Yeager

This paper provides an update on research in the relatively new and fast-moving field of decadal climate prediction, and addresses the use of decadal climate predictions not only for potential users of such information but also for improving our understanding of processes in the climate system. External forcing influences the predictions throughout, but their contributions to predictive skill become dominant after most of the improved skill from initialization with observations vanishes after about 6–9 years. Recent multimodel results suggest that there is relatively more decadal predictive skill in the North Atlantic, western Pacific, and Indian Oceans than in other regions of the world oceans. Aspects of decadal variability of SSTs, like the mid-1970s shift in the Pacific, the mid-1990s shift in the northern North Atlantic and western Pacific, and the early-2000s hiatus, are better represented in initialized hindcasts compared to uninitialized simulations. There is evidence of higher skill in initialize...


Science | 1994

The Role of Mesoscale Tracer Transports in the Global Ocean Circulation

Gokhan Danabasoglu; James C. McWilliams; Peter R. Gent

Ocean models routinely used in simulations of the Earths climate do not resolve mesoscale eddies because of the immense computational cost. A new parameterization of the effects of these eddies has been implemented in a widely used model. A comparison of its solution with that of the conventional parameterization shows significant improvements in the global temperature distribution, the poleward and surface heat fluxes, and the locations of deep-water formation.


Journal of Climate | 1995

Sensitivity of the Global Ocean Circulation to Parameterizations of Mesoscale Tracer Transports

Gokhan Danabasoglu; James Williams

Abstract The isopycnal transport parameterization of Gent and Mc Williams has been implemented in the GFDL ocean general circulation model, replacing the physically unjustifiable horizontal mixing of tracers. The effects of this parameterization are investigated in a global domain. A comparison of its results with those of the conventional horizontal diffusion shows substantial and significant improvements in several climatically important aspects of the ocean circulation. These improvements include a sharper main thermocline, cooler abyssal ocean, elimination of the Deacon cell as a tracer transport agent, zonally integrated meridional heat transport and surface heat fluxes in better agreement with observations, and better confinement of the locations where deep convection occurs. The sensitivity of the model to the magnitude of the horizontal and isopycnal diffusion coefficients is also studied, showing that the domain averages of potential temperature and salinity, the mass transport of the Antarctic C...


Journal of Climate | 2006

Attribution and Impacts of Upper-Ocean Biases in CCSM3

William G. Large; Gokhan Danabasoglu

The largest and potentially most important ocean near-surface biases are examined in the Community Climate System Model coupled simulation of present-day conditions. They are attributed to problems in the component models of the ocean or atmosphere, or both. Tropical biases in sea surface salinity (SSS) are associated with precipitation errors, with the most striking being a band of excess rainfall across the South Pacific at about 8°S. Cooler-than-observed equatorial Pacific sea surface temperature (SST) is necessary to control a potentially catastrophic positive feedback, involving precipitation along the equator. The strength of the wind-driven gyres and interbasin exchange is in reasonable agreement with observations, despite the generally too strong near-surface winds. However, the winds drive far too much transport through Drake Passage [190 Sv (1 Sv 10 6 m 3 s 1 )], but with little effect on SST and SSS. Problems with the width, separation, and location of western boundary currents and their extensions create large correlated SST and SSS biases in midlatitudes. Ocean model deficiencies are suspected because similar signals are seen in uncoupled ocean solutions, but there is no evidence of serious remote impacts. The seasonal cycles of SST and winds in the equatorial Pacific are not well represented, and numerical experiments suggest that these problems are initiated by the coupling of either or both wind components. The largest mean SST biases develop along the eastern boundaries of subtropical gyres, and the overall coupled model response is found to be linear. In the South Atlantic, surface currents advect these biases across much of the tropical basin. Significant precipitation responses are found both in the northwest Indian Ocean, and locally where the net result is the loss of an identifiable Atlantic intertropical convergence zone, which can be regained by controlling the coastal temperatures and salinities. Biases off South America and Baja California are shown to significantly degrade precipitation across the Pacific, subsurface ocean properties on both sides of the equator, and the seasonal cycle of equatorial SST in the eastern Pacific. These signals extend beyond the reach of surface currents, so connections via the atmosphere and subsurface ocean are implicated. Other experimental results indicate that the local atmospheric forcing is only part of the problem along eastern boundaries, with the representation of ocean upwelling another likely contributor.


Journal of Climate | 1998

The NCAR Climate System Model Global Ocean Component

Peter R. Gent; Frank O. Bryan; Gokhan Danabasoglu; Scott C. Doney; William R. Holland; William G. Large; James C. McWilliams

This paper describes the global ocean component of the NCAR Climate System Model. New parameterizations of the effects of mesoscale eddies and of the upper-ocean boundary layer are included. Numerical improvements include a third-order upwind advection scheme and elimination of the artificial North Pole island in the original MOM 1.1 code. Updated forcing fields are used to drive the ocean-alone solution, which is integrated long enough so that it is in equilibrium. The ocean transports and potential temperature and salinity distributions are compared with observations. The solution sensitivity to the freshwater forcing distribution is highlighted, and the sensitivity to resolution is also briefly discussed.


Journal of Climate | 2012

A Decadal Prediction Case Study: Late Twentieth-Century North Atlantic Ocean Heat Content

Stephen Yeager; Alicia Karspeck; Gokhan Danabasoglu; Joseph Tribbia; Haiyan Teng

An ensemble of initialized decadal prediction (DP) experiments using the Community Climate System Model, version 4 (CCSM4) shows considerable skill at forecasting changes in North Atlantic upper-ocean heat content and surface temperature up to a decade in advance. Coupled model ensembles were integrated forward from each of 10 different start dates spanning from 1961 to 2006 with ocean and sea ice initial conditions obtained from a forced historical experiment, a Coordinated Ocean-Ice Reference Experiment with Interannual forcing (CORE-IA), which exhibits good correspondence with late twentieth-century ocean observations from the North Atlantic subpolar gyre (SPG) region. North Atlantic heat content anomalies from the DP ensemble correlate highly with those from the CORE-IA simulation after correcting for a drift bias.In particular, theobservedlarge,rapid rise in SPGheatcontentin themid-1990sis successfullypredicted in the ensemble initialized in January of 1991. A budget of SPG heat content from the CORE-IA experiment sheds light on the origins of the 1990s regime shift, and it demonstrates the extent to which low-frequency changes in ocean heat advection related to the Atlantic meridional overturning circulation dominate temperature tendencies in this region. Similar budgets from the DP ensembles reveal varying degrees of predictive skill in the individual heat budget terms, with large advective heat flux anomalies from the south exhibiting the highest correlation with CORE-IA. The skill of the DP in this region is thus tied to correct initialization of ocean circulation anomalies, while external forcing is found to contribute negligibly (and for incorrect reasons) to predictive skill in this region over this time period.

Collaboration


Dive into the Gokhan Danabasoglu's collaboration.

Top Co-Authors

Avatar

William G. Large

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Stephen M. Griffies

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Stephen Yeager

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia Karspeck

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Tribbia

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Peter R. Gent

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Simon J. Marsland

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Frank O. Bryan

National Center for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge