Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gokhlesh Kumar is active.

Publication


Featured researches published by Gokhlesh Kumar.


Veterinary Research | 2016

The impact of co-infections on fish: a review.

Mohamed H. Kotob; Simon Menanteau-Ledouble; Gokhlesh Kumar; Mahmoud Abdelzaher; Mansour El-Matbouli

Co-infections are very common in nature and occur when hosts are infected by two or more different pathogens either by simultaneous or secondary infections so that two or more infectious agents are active together in the same host. Co-infections have a fundamental effect and can alter the course and the severity of different fish diseases. However, co-infection effect has still received limited scrutiny in aquatic animals like fish and available data on this subject is still scarce. The susceptibility of fish to different pathogens could be changed during mixed infections causing the appearance of sudden fish outbreaks. In this review, we focus on the synergistic and antagonistic interactions occurring during co-infections by homologous or heterologous pathogens. We present a concise summary about the present knowledge regarding co-infections in fish. More research is needed to better understand the immune response of fish during mixed infections as these could have an important impact on the development of new strategies for disease control programs and vaccination in fish.


Parasitology | 2014

Vertical transmission of Tetracapsuloides bryosalmonae (Myxozoa), the causative agent of salmonid proliferative kidney disease.

Ahmed Abd-Elfattah; Inês Fontes; Gokhlesh Kumar; Hatem Soliman; Hanna Hartikainen; Beth Okamura; Mansour El-Matbouli

The freshwater bryozoan, Fredericella sultana, is the main primary host of the myxozoan endoparasite, Tetracapsuloides bryosalmonae which causes proliferative kidney disease (PKD) of salmonid fish. Because spores that develop in bryozoan colonies are infectious to fish, bryozoans represent the ultimate source of PKD. Bryozoans produce numerous seed-like dormant stages called statoblasts that enable persistence during unfavourable conditions and achieve long-distance dispersal. The possibility that T. bryosalmonae may undergo vertical transmission via infection of statoblasts has been the subject of much speculation since this is observed in close relatives. This study provides the first evidence that such vertical transmission of T. bryosalmonae is extensive by examining the proportions of infected statoblasts in populations of F. sultana on two different rivers systems and confirms its effectiveness by demonstrating transmission from material derived from infected statoblasts to fish hosts. Vertical transmission in statoblasts is likely to play an important role in the infection dynamics of both bryozoan and fish hosts and may substantially contribute to the widespread distribution of PKD.


Diseases of Aquatic Organisms | 2013

Fate of Tetracapsuloides bryosalmonae (Myxozoa) after infection of brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss

Gokhlesh Kumar; Ahmed Abd-Elfattah; Mona Saleh; Mansour El-Matbouli

Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in salmonids. We assessed differences in intensity of T. bryosalmonae infection between brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss from the clinical phase of infection onwards. Specific pathogen-free fish were exposed to T. bryosalmonae spores under controlled laboratory conditions and sampled at 6, 8, 10, 12, 14, and 17 wk post exposure (wpe), and the transmission of T. bryosalmonae from infected fish to the bryozoan Fredericella sultana was observed. Parasite load was determined in fish kidneys by quantitative real-time PCR (qRT-PCR), and parasite stages were detected in kidney, liver, and spleen tissues at different time points by immunohistochemistry. T. bryosalmonae was successfully transmitted from infected brown trout to F. sultana colonies but not from infected rainbow trout. Body length and weight of infected brown trout did not differ significantly from control brown trout during all time points, while length and weight of infected rainbow trout differed significantly compared to controls from 10 to 17 wpe. qRT-PCR revealed that parasite load was significantly higher in kidneys of brown trout compared with rainbow trout. Immunohistochemistry showed high numbers of intra-luminal stages (sporogonic stages) in kidneys of brown trout with low numbers of pre-sporogonic stages. Sporogonic stages were not seen in kidneys of rainbow trout; only high numbers of pre-sporogonic stages were detected. Numbers of pre-sporogonic stages were low in the spleen and liver of brown trout but high in rainbow trout. These data confirmed that there are differences in the development and infection progress of T. bryosalmonae between brown trout and rainbow trout.


Fish & Shellfish Immunology | 2008

Development of monoclonal antibodies to rohu [Labeo rohita] immunoglobulins for use in immunoassays.

Gaurav Rathore; Gokhlesh Kumar; Neeraj Sood; D. Kapoor; W.S. Lakra

Serum immunoglobulins [Ig] of rohu [Labeo rohita] were purified by affinity chromatography using bovine serum albumin as capture ligand. The purified rohu Ig [r-Ig] had a molecular weight [MW] of 880 kDa as determined with gel filtration chromatography. The heavy chain of r-Ig had an MW of 77.8 kDa and that of light chain was 26.4 kDa in SDS-PAGE. Purified r-Ig was used for the production of two anti-rohu Ig monoclonal antibodies [D7 and H4] that belonged to subclass IgG2b and IgG1, respectively. Both the MAbs were specific to heavy chain of r-Ig as seen in Western blotting. Anti-rohu Ig MAb was used as a diagnostic reagent in ELISA and immunocytochemical assays to demonstrate its application for sero-surveillance and for immunological studies in rohu. A competitive ELISA was used to demonstrate the antigenic relatedness of r-Ig with whole serum Ig of other fish species. Cross reactivity of anti-rohu Ig MAb was observed with serum Ig of Catla catla and Cirrihinus mrigala. No reactivity to serum Ig of Ophiocephalus striatus and Clarias gariepinus was seen. Anti-rohu Ig MAb was found to be suitable for the detection of pathogen specific [Edwardsiella tarda] antibodies in serum of immunized rohu by an indirect ELISA. In flow cytometry using D7 MAb, the mean percentage [+/-SE] of Ig positive cells in spleen and blood of rohu were found to be 64.85% [+/-2.34] and 51.84% [+/-2.55] of gated lymphocytes, respectively. Similarly, D7 MAb also stained 52.84% [+/-1.30] and 10.5% of gated lymphocytes in kidney and thymus, respectively. The anti-rohu Ig MAbs also showed specific staining of Ig bearing cells in spleen sections by the indirect immunoperoxidase test.


Journal of Applied Microbiology | 2009

Proteomic analysis of outer membrane proteins of Edwardsiella tarda

Gokhlesh Kumar; Prashant Sharma; Gaurav Rathore; Deepa Bisht; Utpal Sengupta

Aims:  The purpose of this study was to identify outer membrane proteins (OMPs) of Edwardsiella tarda.


Comparative Immunology Microbiology and Infectious Diseases | 2010

Production of monoclonal antibodies specific to major outer membrane protein of Edwardsiella tarda

Gokhlesh Kumar; Gaurav Rathore; Utpal Sengupta; D. Kapoor; W.S. Lakra

Edwardsiella tarda is an important cause for hemorrhagic septicemia in fish and gastro and extra-intestinal infections in humans. Monoclonal antibodies (MAbs) were produced against outer membrane proteins (OMPs) of E. tarda ET-7, isolated from diseased snakehead (Ophiocephalus punctatus). Two stable hybridoma clones, designated as 3F10 and 2C3 MAbs were found to be potentially specific for E. tarda by indirect enzyme linked immunosorbent assay (ELISA). These MAbs recognized major immunogenic OMP band at 44kDa in Western blotting. Both MAbs belonged to the IgG1 isotype and recognized different epitopes of OMP as seen by competitive ELISA. These MAbs strongly reacted with all 17 isolates of E. tarda used in our study by indirect ELISA and Western blotting. Interestingly, no reaction was observed with the reference strain of E. tarda (MTCC 2400). The sensitivity of 3F10 MAb to detect whole cells of E. tarda was up to a level of 1x10(4)CFU/ml in indirect ELISA. No cross-reactivity of MAbs were seen with Escherichia coli, Salmonella arizonae, Pseudomonas fluorescens, Aeromonas hydrophila, Vibrio cholerae, Flavobacterium ferrugineum and Mycobacterium tuberculosis. These MAbs could be used for specific detection of E. tarda infection in fish by immunoassays.


Parasitology Research | 2015

Identification of differentially expressed genes of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in response to Tetracapsuloides bryosalmonae (Myxozoa).

Gokhlesh Kumar; Ahmed Abd-Elfattah; Mansour El-Matbouli

Tetracapsuloides bryosalmonae Canning et al., 1999 (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. We have shown previously that the development and distribution of the European strain of T. bryosalmonae differs in the kidney of brown trout (Salmo trutta) Linnaeus, 1758 and rainbow trout (Oncorhynchus mykiss) Walbaum, 1792, and that intra-luminal sporogonic stages were found in brown trout but not in rainbow trout. We have now compared transcriptomes from kidneys of brown trout and rainbow trout infected with T. bryosalmonae using suppressive subtractive hybridization (SSH). The differentially expressed transcripts produced by SSH were cloned, transformed, and tested by colony PCR. Differential expression screening of PCR products was validated using dot blot, and positive clones having different signal intensities were sequenced. Differential screening and a subsequent NCBI-BLAST analysis of expressed sequence tags revealed nine clones expressed differently between both fish species. These differentially expressed genes were validated by quantitative real-time PCR of kidney samples from both fish species at different time points of infection. Expression of anti-inflammatory (TSC22 domain family protein 3) and cell proliferation (Prothymin alpha) genes were upregulated significantly in brown trout but downregulated in rainbow trout. The expression of humoral immune response (immunoglobulin mu) and endocytic pathway (Ras-related protein Rab-11b) genes were significantly upregulated in rainbow trout but downregulated in brown trout. This study suggests that differential expression of host anti-inflammatory, humoral immune and endocytic pathway responses, cell proliferation, and cell growth processes do not inhibit the development of intra-luminal sporogonic stages of the European strain of T. bryosalmonae in brown trout but may suppress it in rainbow trout.


Journal of Fish Diseases | 2013

Establishment of medium for laboratory cultivation and maintenance of Fredericella sultana for in vivo experiments with Tetracapsuloides bryosalmonae (Myxozoa)

Gokhlesh Kumar; Ahmed Abd-Elfattah; Hatem Soliman; Mansour El-Matbouli

The freshwater bryozoan Fredericella sultana (Blumenbach) is the most common invertebrate host of the myxozoan parasite Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease in salmonid fish. Culture media play an important role in hatching of statoblasts and maintaining clean bryozoan colonies for Malacosporea research. We developed a novel culture medium, Bryozoan Medium C (BMC), for the cultivation and maintenance of F. sultana under laboratory conditions. Statoblasts of F. sultana were successfully hatched to produce transparent-walled, specific pathogen-free (SPF) colonies that were maintained >12 months in BMC at pH 6.65. Tetracapsuloides bryosalmonae was successfully transmitted from infected brown trout, Salmo trutta L., to newly hatched F. sultana colonies in BMC, then from the infected bryozoan to SPF brown trout. This study demonstrated the utility of BMC (pH 6.65) for hatching statoblasts, long-term cultivation of clean and transparent bryozoan colonies and maintenance of the Tetracapsuloides bryosalmonae life cycle in the laboratory for molecular genetic research and other studies such as host–parasiteinteraction.


Diseases of Aquatic Organisms | 2014

Persistence of Tetracapsuloides bryosalmonae (Myxozoa) in chronically infected brown trout Salmo trutta

Ahmed Abd-Elfattah; Gokhlesh Kumar; Hatem Soliman; Mansour El-Matbouli

Proliferative kidney disease (PKD) is a widespread disease of farmed and wild salmonid populations in Europe and North America, caused by the myxozoan parasite Tetracapsuloides bryosalmonae. Limited studies have been performed on the epidemiological role in spread of the disease played by fish that survive infection with T. bryosalmonae. The aim of the present study was to evaluate the persistence of T. bryosalmonae developmental stages in chronically infected brown trout Salmo trutta up to 2 yr after initial exposure to laboratory-infected colonies of the parasites alternate host, the bryozoan Fredericella sultana. Kidney, liver, spleen, intestine, brain, gills and blood were sampled 24, 52, 78 and 104 wk post-exposure (wpe) and tested for T. bryosalmonae by PCR and immunohistochemistry (IHC). Cohabitation trials with specific pathogen free (SPF) F. sultana colonies were conducted to test the viability of T. bryosalmonae. PCR detected T. bryosalmonae DNA in all tissue samples collected at the 4 time points. Developmental stages of T. bryosalmonae were demonstrated by IHC in most samples at the 4 time points. Cohabitation of SPF F. sultana with chronically infected brown trout resulted in successful transmission of T. bryosalmonae to the bryozoan. This study verified the persistence of T. bryosalmonae in chronically infected brown trout and their ability to infect the bryozoan F. sultana up to 104 wpe.


Veterinary Research | 2016

Shotgun proteomic analysis of Yersinia ruckeri strains under normal and iron-limited conditions

Gokhlesh Kumar; Karin Hummel; Maike Ahrens; Simon Menanteau-Ledouble; Timothy J. Welch; Martin Eisenacher; Ebrahim Razzazi-Fazeli; Mansour El-Matbouli

Yersinia ruckeri is the causative agent of enteric redmouth disease of fish that causes significant economic losses, particularly in salmonids. Bacterial pathogens differentially express proteins in the host during the infection process, and under certain environmental conditions. Iron is an essential nutrient for many cellular processes and is involved in host sensing and virulence regulation in many bacteria. Little is known about proteomics expression of Y. ruckeri in response to iron-limited conditions. Here, we present whole cell protein identification and quantification for two motile and two non-motile strains of Y. ruckeri cultured in vitro under iron-sufficient and iron-limited conditions, using a shotgun proteomic approach. Label-free, gel-free quantification was performed using a nanoLC-ESI and high resolution mass spectrometry. SWATH technology was used to distinguish between different strains and their responses to iron limitation. Sixty-one differentially expressed proteins were identified in four Y. ruckeri strains. These proteins were involved in processes including iron ion capture and transport, and enzymatic metabolism. The proteins were confirmed to be differentially expressed at the transcriptional level using quantitative real time PCR. Our study provides the first detailed proteome analysis of Y. ruckeri strains, which contributes to our understanding of virulence mechanisms of Y. ruckeri, and informs development of novel control methods for enteric redmouth disease.

Collaboration


Dive into the Gokhlesh Kumar's collaboration.

Top Co-Authors

Avatar

Mansour El-Matbouli

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Mona Saleh

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Gaurav Rathore

Indian Council of Agricultural Research

View shared research outputs
Top Co-Authors

Avatar

Ahmed Abd-Elfattah

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Simon Menanteau-Ledouble

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ebrahim Razzazi-Fazeli

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Karin Hummel

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge