Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Golam Mohi is active.

Publication


Featured researches published by Golam Mohi.


Blood | 2012

Critical requirement for Stat5 in a mouse model of polycythemia vera

Dongqing Yan; Robert E. Hutchison; Golam Mohi

The JAK2V617F mutation has been identified in most cases of Ph-negative myeloproliferative neoplasms (MPNs) including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Expression of JAK2V617F results in constitutive activation of multiple signaling molecules/pathways. However, the key signaling downstream of JAK2V617F required for transformation and induction of MPNs remains elusive. Using a mouse genetic strategy, we show here that Stat5 is absolutely required for the pathogenesis of PV induced by Jak2V617F. Whereas expression of Jak2V617F in mice resulted in all the features of human PV, including an increase in red blood cells, hemoglobin, hematocrit, white blood cells, platelets, and splenomegaly, deletion of Stat5 in the Jak2V617F knockin mice normalized all the blood parameters and the spleen size. Furthermore, deletion of Stat5 completely abrogated erythropoietin (Epo)-independent erythroid colony formation evoked by Jak2V617F, a hallmark feature of PV. Re-expression of Stat5 in Stat5-deficient Jak2V617F knockin mice completely rescued the defects in transformation of hematopoietic progenitors and the PV phenotype. Together, these results indicate a critical function for Stat5 in the pathogenesis of PV. These findings also provide strong support for the development of Stat5 inhibitors as targeted therapies for the treatment of PV and other JAK2V617F-positive MPNs.


Blood | 2012

Efficacy of vorinostat in a murine model of polycythemia vera

Hajime Akada; Saeko Akada; Ajeet Gajra; Alicia K. Bair; Stephen L. Graziano; Robert E. Hutchison; Golam Mohi

The discovery of the JAK2V617F mutation in most patients with Ph-negative myeloproliferative neoplasms has led to the development of JAK2 kinase inhibitors. However, JAK2 inhibitor therapy has shown limited efficacy and dose-limiting hematopoietic toxicities in clinical trials. In the present study, we describe the effects of vorinostat, a small-molecule inhibitor of histone deacetylase, against cells expressing JAK2V617F and in an animal model of polycythemia vera (PV). We found that vorinostat markedly inhibited proliferation and induced apoptosis in cells expressing JAK2V617F. In addition, vorinostat significantly inhibited JAK2V617F-expressing mouse and human PV hematopoietic progenitors. Biochemical analyses revealed significant inhibition of phosphorylation of JAK2, Stat5, Stat3, Akt, and Erk1/2 in vorinostat-treated, JAK2V617F-expressing human erythroleukemia (HEL) cells. Expression of JAK2V617F and several other genes, including GATA1, KLF1, FOG1, SCL, C/EPBα, PU.1, and NF-E2, was significantly down-regulated, whereas the expression of SOCS1 and SOCS3 was up-regulated by vorinostat treatment. More importantly, we observed that vorinostat treatment normalized the peripheral blood counts and markedly reduced splenomegaly in Jak2V617F knock-in mice compared with placebo treatment. Vorinostat treatment also decreased the mutant allele burden in mice. Our results suggest that vorinostat may have therapeutic potential for the treatment of PV and other JAK2V617F-associated myeloproliferative neoplasms.


Stem Cells | 2014

Critical Role of Jak2 in the Maintenance and Function of Adult Hematopoietic Stem Cells

Hajime Akada; Saeko Akada; Robert E. Hutchison; Kazuhito Sakamoto; Kay Uwe Wagner; Golam Mohi

Jak2, a member of the Janus kinase family of nonreceptor protein tyrosine kinases, is activated in response to a variety of cytokines, and functions in survival and proliferation of cells. An activating JAK2V617F mutation has been found in most patients with myeloproliferative neoplasms, and patients treated with Jak2 inhibitors show significant hematopoietic toxicities. However, the role of Jak2 in adult hematopoietic stem cells (HSCs) has not been clearly elucidated. Using a conditional Jak2 knockout allele, we have found that Jak2 deletion results in rapid loss of HSCs/progenitors leading to bone marrow failure and early lethality in adult mice. Jak2 deficiency causes marked impairment in HSC function, and the mutant HSCs are severely defective in reconstituting hematopoiesis in recipient animals. Jak2 deficiency also causes significant apoptosis and loss of quiescence in HSC‐enriched LSK (Lin−Sca‐1+c‐Kit+) cells. Jak2‐deficient LSK cells exhibit elevated reactive oxygen species levels and enhanced p38 MAPK activation. Mutant LSK cells also show defective Stat5, Erk, and Akt activation in response to thrombopoietin and stem cell factor. Gene expression analysis reveals significant downregulation of genes related to HSC quiescence and self‐renewal in Jak2‐deficient LSK cells. These data suggest that Jak2 plays a critical role in the maintenance and function of adult HSCs. Stem Cells 2014;32:1878–1889


Blood | 2016

Loss of Ezh2 cooperates with Jak2V617F in the development of myelofibrosis in a mouse model of myeloproliferative neoplasm

Yue Yang; Hajime Akada; Dipmoy Nath; Robert E. Hutchison; Golam Mohi

An activating JAK2V617F mutation has been found in ∼50% patients with myelofibrosis (MF). Inactivating mutations in histone methyltransferase enhancer of zeste homolog 2 (EZH2) also have been observed in patients with MF. Interestingly, inactivating EZH2 mutations are often associated with JAK2V617F mutation in MF, although their contributions in the pathogenesis of MF remain elusive. To determine the effects of concomitant loss of EZH2 and JAK2V617F mutation in hematopoiesis, we generated Ezh2-deficient Jak2V617F-expressing mice. Whereas expression of Jak2V617F alone induced a polycythemia vera-like disease, concomitant loss of Ezh2 significantly reduced the red blood cell and hematocrit parameters but increased the platelet counts in Jak2V617F knock-in mice. Flow cytometric analysis showed impairment of erythroid differentiation and expansion of megakaryocytic precursors in Ezh2-deficient Jak2V617F mice. Moreover, loss of Ezh2 enhanced the repopulation capacity of Jak2V617F-expressing hematopoietic stem cells. Histopathologic analysis revealed extensive fibrosis in the bone marrow (BM) and spleen of Ezh2-deleted Jak2V617F mice. Transplantation of BM from Ezh2-deleted Jak2V617F mice into wild-type animals resulted in even faster progression to MF. Gene expression profiling and chromatin immunoprecipitation sequence analysis revealed that S100a8, S100a9, Ifi27l2a, and Hmga2 were transcriptionally derepressed, and the H3K27me3 levels in these gene promoters were significantly reduced on Ezh2 deletion in hematopoietic progenitors of Jak2V617F mice. Furthermore, overexpression of S100a8, S100a9, Ifi27l2a, or Hmga2 significantly increased megakaryocytic colonies in the BM of Jak2V617F mice, indicating a role for these Ezh2 target genes in altered megakaryopoiesis involved in MF. Overall, our results suggest that loss of Ezh2 cooperates with Jak2V617F in the development of MF in Jak2V617F-expressing mice.


FEBS Letters | 2011

Differential Biological Activity of Disease-Associated JAK2 Mutants

Haiying Zou; Dongqing Yan; Golam Mohi

EpoR physically interacts with Jak2 by anti bait coimmunoprecipitation (View Interaction 1, 2, 3)


Blood | 2016

Distinct GAB2 signaling pathways are essential for myeloid and lymphoid transformation and leukemogenesis by BCR-ABL1

Shengqing Gu; Chan Ww; Golam Mohi; Rosenbaum J; Sayad A; Lu Z; Virtanen C; Shaoguang Li; Benjamin G. Neel; Van Etten Ra

Tyrosine kinase inhibitors (TKIs) directed against BCR-ABL1, the product of the Philadelphia (Ph) chromosome, have revolutionized treatment of patients with chronic myeloid leukemia (CML). However, acquired resistance to TKIs is a significant clinical problem in CML, and TKI therapy is much less effective against Ph(+)B-cell acute lymphoblastic leukemia (B-ALL). BCR-ABL1, via phosphorylated Tyr177, recruits the adapter GRB2-associated binding protein 2 (GAB2) as part of a GRB2/GAB2 complex. We showed previously that GAB2 is essential for BCR-ABL1-evoked myeloid transformation in vitro. Using a genetic strategy and mouse models of CML and B-ALL, we show here that GAB2 is essential for myeloid and lymphoid leukemogenesis by BCR-ABL1. In the mouse model, recipients of BCR-ABL1-transducedGab2(-/-)bone marrow failed to develop CML-like myeloproliferative neoplasia. Leukemogenesis was restored by expression of GAB2 but not by GAB2 mutants lacking binding sites for its effectors phosphatidylinositol 3-kinase (PI3K) or SRC homology 2-containing phosphotyrosine phosphatase 2 (SHP2). GAB2 deficiency also attenuated BCR-ABL1-induced B-ALL, but only the SHP2 binding site was required. The SHP2 and PI3K binding sites were differentially required for signaling downstream of GAB2. Hence, GAB2 transmits critical transforming signals from Tyr177 to PI3K and SHP2 for CML pathogenesis, whereas only the GAB2-SHP2 pathway is essential for lymphoid leukemogenesis. Given that GAB2 is dispensable for normal hematopoiesis, GAB2 and its effectors PI3K and SHP2 represent promising targets for therapy in Ph(+)hematologic neoplasms.


Leukemia | 2015

Deletion of Stat3 enhances myeloid cell expansion and increases the severity of myeloproliferative neoplasms in Jak2V617F knock-in mice

Dongqing Yan; Fatoumata Jobe; Robert E. Hutchison; Golam Mohi

The JAK2V617F mutation commonly found in myeloproliferative neoplasms (MPNs) induces constitutive phosphorylation/activation of the signal transducer and activator of transcription 3 (Stat3). However, the contribution of Stat3 in MPN evoked by JAK2V617F remains unknown. To determine the role of Stat3 in JAK2V617F-induced MPN, we generated Stat3-deficient Jak2V617F-expressing mice. Whereas expression of Jak2V617F resulted in a polycythemia vera-like disease characterized by increased red blood cells (RBCs), hematocrit, neutrophils and platelets in the peripheral blood of Jak2V617F knock-in mice, deletion of Stat3 slightly reduced RBC and hematocrit parameters and modestly increased platelet numbers in Jak2V617F knock-in mice. Moreover, deletion of Stat3 significantly increased the neutrophil counts/percentages and markedly reduced the survival of mice expressing Jak2V617F. These phenotypic manifestations were reproduced upon bone marrow (BM) transplantation into wild-type animals. Flow cytometric analysis showed increased hematopoietic stem cell and granulocyte-macrophage progenitor populations in the BM and spleens of Stat3-deficient Jak2V617F mice. Stat3 deficiency also caused a marked expansion of Gr-1+/Mac-1+ myeloid cells in Jak2V617F knock-in mice. Histopathologic analysis revealed marked increase in granulocytes in the BM, spleens and livers of Stat3-deficient Jak2V617F-expressing mice. Together, these results suggest that deletion of Stat3 increases the severity of MPN induced by Jak2V617F.


Leukemia | 2014

Loss of wild-type Jak2 allele enhances myeloid cell expansion and accelerates myelofibrosis in Jak2V617F knock-in mice

Hajime Akada; Saeko Akada; Robert E. Hutchison; Golam Mohi

JAK2V617F is the most common mutation found in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). Although a majority of MPN patients carry heterozygous JAK2V617F mutation, loss of heterozygosity (LOH) on chromosome 9p (9pLOH) involving the JAK2 locus has been observed in ∼30% of MPN patients. JAK2V617F homozygosity via 9pLOH has been associated with more severe MPN phenotype. However, the contribution of 9pLOH in the pathogenesis of MPNs remains unclear. To investigate the roles of wild-type JAK2 (JAK2 WT) and JAK2V617F alleles in the development of MPNs, we have used conditional Jak2 knock-out and Jak2V617F knock-in mice and generated heterozygous, hemizygous and homozygous Jak2V617F mice. Whereas heterozygous Jak2V617F expression results in a polycythemia vera-like MPN in mice, loss of Jak2 WT allele in hemizygous or homozygous Jak2V617F mice results in markedly increased white blood cells, neutrophils, reticulocytes and platelets in the peripheral blood, and significantly larger spleen size compared with heterozygous Jak2V617F mice. Hemizygous or homozygous Jak2V617F mice also exhibit accelerated myelofibrosis compared with mice expressing heterozygous Jak2V617F. Together, these results suggest that loss of Jak2 WT allele increases the severity of the MPN. Thus, the Jak2 WT allele functions as a negative regulator of MPN induced by Jak2V617F.


Blood | 2012

Tyrosine 201 is required for constitutive activation of JAK2V617F and efficient induction of myeloproliferative disease in mice

Dongqing Yan; Robert E. Hutchison; Golam Mohi

The JAK2V617F mutation has been detected in most cases of Ph-negative myeloproliferative neoplasms (MPNs). The JAK2V617F protein is a constitutively activated tyrosine kinase that leads to transformation of hematopoietic progenitors. Previous studies have shown that several tyrosine residues within JAK2 are phosphorylated on growth factor or cytokine stimulation. However, the role of these tyrosine residues in signaling and transformation mediated by JAK2V617F remains unclear. In this study, we sought to determine the role of tyrosine 201, which is a potential binding site for Src homology 2 domain-containing proteins, in JAK2V617F-induced hematopoietic transformation by introducing a tyrosine-to-phenylalanine point mutation (Y201F) at this site. We observed that the Y201F mutation significantly inhibited cytokine-independent cell growth and induced apoptosis in Ba/F3-EpoR cells expressing JAK2V617F. The Y201F mutation also resulted in significant inhibition of JAK2V617F-mediated transformation of hematopoietic cells. Biochemical analyzes revealed that the Y201F mutation almost completely inhibited constitutive phosphorylation/activation of JAK2V617F. We also show that the Y201 site of JAK2V617F promotes interaction with Stat5 and Shp2, and constitutive activation of downstream signaling pathways. Furthermore, using a BM transduction/transplantation approach, we found that tyrosine 201 plays an important role in the induction of MPNs mediated by JAK2V617F.


Blood | 2017

Hmga2 promotes the development of myelofibrosis in Jak2V617F knock-in mice by enhancing TGF-β1 and Cxcl12 pathways

Avik Dutta; Robert E. Hutchison; Golam Mohi

Myelofibrosis (MF) is a devastating blood disorder. The JAK2V617F mutation has been detected in ∼50% cases of MF. Elevated expression of high-mobility group AT hook 2 (HMGA2) has also been frequently observed in patients with MF. Interestingly, upregulation of HMGA2 expression has been found in association with the JAK2V617F mutation in significant cases of MF. However, the contribution of HMGA2 in the pathogenesis of MF remains elusive. To determine the effects of concurrent expression of HMGA2 and JAK2V617F mutation in hematopoiesis, we transduced bone marrow cells from Jak2V617F knockin mice with lentivirus expressing Hmga2 and performed bone marrow transplantation. Expression of Hmga2 enhanced megakaryopoiesis, increased extramedullary hematopoiesis, and accelerated the development of MF in mice expressing Jak2V617F Mechanistically, the data show that expression of Hmga2 enhances the activation of transforming growth factor-β1 (TGF-β1) and Cxcl12 pathways in mice expressing Jak2V617F In addition, expression of Hmga2 causes upregulation of Fzd2, Ifi27l2a, and TGF-β receptor 2. Forced expression of Cxcl12, Fzd2, or Ifi27l2a increases megakaryocytic differentiation and proliferation in the bone marrow of Jak2V617F mice, whereas TGF-β1 or Cxcl12 stimulation induces collagen deposition in the bone marrow mesenchymal stromal cells. Together, these findings demonstrate that expression of Hmga2 cooperates with Jak2V617F in the pathogenesis of MF.

Collaboration


Dive into the Golam Mohi's collaboration.

Top Co-Authors

Avatar

Robert E. Hutchison

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Dongqing Yan

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Hajime Akada

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Saeko Akada

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Dipmoy Nath

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Fatoumata Jobe

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Yue Yang

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Avik Dutta

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge