Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gon Namkoong is active.

Publication


Featured researches published by Gon Namkoong.


Journal of Applied Physics | 2002

Role of sapphire nitridation temperature on GaN growth by plasma assisted molecular beam epitaxy: Part I. Impact of the nitridation chemistry on material characteristics

Gon Namkoong; W. Alan Doolittle; April S. Brown; Maria Losurdo; Pio Capezzuto; Giovanni Bruno

The impact of the nitridation temperature on sapphire/GaN interface modifications and the structural, chemical, and optical properties of GaN epitaxial thin films with N plasma radicals is investigated. Based on ex situ spectroscopic ellipsometry and x-ray photoelectron spectroscopy analysis, it is found that the sapphire nitridation chemistry, specifically AlN versus oxynitride (NO) production, depends on the surface temperature. Nitridation at 200 °C produces a very thin AlN layer with 90% coverage, while high temperature nitridation leads to a 70% coverage of AlN layer containing NO. These initial stages of growth significantly impact the characteristics of the layers following the nitridation step, specifically the low temperature buffer, annealed buffer, and the GaN epitaxial layer. The annealed buffer on a 200 °C nitridation provides a homogeneous GaN thin layer covering most of the sapphire surface. This homogeneous GaN layer after annealing produces a superior template for subsequent growth, resul...


ACS Nano | 2010

Synthesis of Nested Coaxial Multiple-Walled Nanotubes by Atomic Layer Deposition

Diefeng Gu; Helmut Baumgart; Tarek M. Abdel-Fattah; Gon Namkoong

Nested multiple-walled coaxial nanotube structures of transition metal oxides, semiconductors, and metals were successfully synthesized by atomic layer deposition (ALD) techniques utilizing nanoporous anodic aluminum oxide (AAO) as templates. In order to fabricate free-standing tube-in-tube nanostructures, successive ALD nanotubes were grown on the interior template walls of the AAO nanochannels. The coaxial nanotubes were alternated by sacrificial spacers of ALD Al(2)O(3), to be chemically removed to release the nanotubes from the AAO template. In this study, we synthesized a novel nanostructure with up to five nested coaxial nanotubes within AAO templates. This synthesis can be extended to fabricate n-times tube-in-tube nanostructures of different materials with applications in multisensors, broadband detectors, nanocapacitors, and photovoltaic cells.


Journal of Applied Physics | 2008

Reproducible increased Mg incorporation and large hole concentration in GaN using metal modulated epitaxy

Shawn D. Burnham; Gon Namkoong; David C. Look; Bruce Clafin; W. Alan Doolittle

The metal modulated epitaxy (MME) growth technique is reported as a reliable approach to obtain reproducible large hole concentrations in Mg-doped GaN grown by plasma-assisted molecular-beam epitaxy on c-plane sapphire substrates. An extremely Ga-rich flux was used, and modulated with the Mg source according to the MME growth technique. The shutter modulation approach of the MME technique allows optimal Mg surface coverage to build between MME cycles and Mg to incorporate at efficient levels in GaN films. The maximum sustained concentration of Mg obtained in GaN films using the MME technique was above 7×1020cm−3, leading to a hole concentration as high as 4.5×1018cm−3 at room temperature, with a mobility of 1.1cm2V−1s−1 and a resistivity of 1.3Ωcm. At 580K, the corresponding values were 2.6×1019cm−3, 1.2cm2V−1s−1, and 0.21Ωcm, respectively. Even under strong white light, the sample remained p-type with little change in the electrical parameters.


Journal of Applied Physics | 2002

Role of sapphire nitridation temperature on GaN growth by plasma assisted molecular beam epitaxy: Part II. Interplay between chemistry and structure of layers

Maria Losurdo; Pio Capezzuto; Giovanni Bruno; Gon Namkoong; W. Alan Doolittle; April S. Brown

The effect of sapphire nitridation temperature on the chemistry and microstructure of the sapphire substrate/GaN interface, nucleation layer, and of the GaN epilayers grown by rf plasma assisted molecular beam epitaxy is investigated. It is found that a sapphire nitridation temperature as low as 200 °C improves the structural and optical quality of GaN epilayers. This result can be explained by the chemistry of the sapphire nitridation process, which is discussed in the framework of a model considering the competitive formation of AlN and oxynitride (NO). In particular, at 200 °C, NO desorbs from the sapphire surface, yielding an homogeneous 6 A AlN layer upon N2 plasma nitridation. This low temperature AlN template favors the nucleation of hexagonal GaN nuclei which coalesce completely resulting in a hexagonal GaN buffer layer that homogeneously covers the sapphire substrate. This condition promotes the growth of a high quality GaN epilayer. In contrast, high nitridation temperatures result in a mixed Al...


Journal of Applied Physics | 2012

Observation and control of the surface kinetics of InGaN for the elimination of phase separation

Michael W. Moseley; Brendan P. Gunning; Jordan D. Greenlee; Jonathan Lowder; Gon Namkoong; W. Alan Doolittle

The growth of InGaN alloys via Metal-Modulated Epitaxy has been investigated. Transient reflection high-energy electron diffraction intensities for several modulation schemes during the growth of 20% InGaN were analyzed, and signatures associated with the accumulation, consumption, and segregation of excess metal adlayers were identified. A model for shuttered, metal-rich growth of InGaN was then developed, and a mechanism for indium surface segregation was elucidated. It was found that indium surface segregation only occurs after a threshold of excess metal is accumulated, and a method of quantifying this indium surface segregation onset dose is presented. The onset dose of surface segregation was found to be indium-composition dependent and between 1 and 2 monolayers of excess metal. Below this surface threshold off excess metal, metal-rich growth can occur without indium surface segregation. Since at least 2 monolayers of excess metal will accumulate in the case of metal-rich, unshuttered growth of InG...


Applied Physics Letters | 2005

III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy

Gon Namkoong; Kyoung-Keun Lee; Shannon M. Madison; Walter Henderson; Stephen E. Ralph; W. Alan Doolittle

Integration of III-nitride electrical devices on the ferroelectric material lithium niobate (LiNbO3) has been demonstrated. As a ferroelectric material, lithium niobate has a polarization which may provide excellent control of the polarity of III-nitrides. However, while high temperature, 1000°C, thermal treatments produce atomically smooth surfaces, improving adhesion of GaN epitaxial layers on lithium niobate, repolarization of the substrate in local domains occurs. These effects result in multi domains of mixed polarization in LiNbO3, producing inversion domains in subsequent GaN epilayers. However, it is found that AlN buffer layers suppress inversion domains of III-nitrides. Therefore, two-dimensional electron gases in AlGaN∕GaN heterojunction structures are obtained. Herein, the demonstration of the monolithic integration of high power devices with ferroelectric materials presents possibilities to control LiNbO3 modulators on compact optoelectronic/electronic chips.


Solid-state Electronics | 2003

Challenges and potential payoff for crystalline oxides in wide bandgap semiconductor technology

W. Alan Doolittle; Gon Namkoong; Alexander G. Carver; April S. Brown

Abstract While growth of wide bandgap semiconductor materials on crystalline oxides (sapphire, lithium gallate, lithium aluminate, zinc oxide and others) has become routine, growth of crystalline oxides on wide bandgap materials remains challenging and minimally explored. The potential payoff in terms of enhanced device performance, increased functionality and reliability warrants examining this option. This presentation aims at targeting key areas, where crystalline oxides could improve wide bandgap semiconductor device performance. Some of these include the use of ferroelectric oxides for power switching applications, oxides with anisotropic dielectric constants for high voltage termination and oxides with large electric flux density near breakdown. Unique polarization engineered structures are described that are enabled by using lithographically defined poled regions in a ferroelectric substrate. The desired crystalline oxide properties, potential implementation challenges and potential pitfalls will be discussed.


Journal of Applied Physics | 2010

Design of organic tandem solar cells using PCPDTBT: PC61BM and P3HT: PC71BM

Gon Namkoong; Patrick Boland; Keejoo Lee; James Dean

We conducted optical and electrical simulations with the goal of determining the optimal design for conjugated polymer-fullerene tandem solar cells using poly[2,6-(4,4-bis-(2-ethylhexyl)- 4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT): [6,6]-phenyl C61 butyric acid methyl ester (PC61BM) as a bottom cell and poly(3-hexylthiophene) (P3HT): [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) as a top cell. The effects of photon density, absorption, balanced and unbalanced charge carrier transport, and bimolecular recombination in the two subcells were incorporated into the simulations. We found that the maximum energy conversion efficiency (η) is 9% when charge carrier mobilities in both top and bottom cells are balanced. However, the efficiency drops significantly if the carrier mobilities are unbalanced in either the top or bottom cell. In addition, we found that unbalanced carrier mobilities in the top cell require a reduction in the thickness of the bottom cell wherea...


Applied Physics Letters | 2005

III-nitrides on oxygen- and zinc-face ZnO substrates

Gon Namkoong; Shawn D. Burnham; Kyoung-Keun Lee; Elaissa Trybus; W. Alan Doolittle; Maria Losurdo; Pio Capezzuto; Giovanni Bruno; Bill Nemeth; Jeff Nause

The characteristics of III-nitrides grown on zinc- and oxygen-face ZnO by plasma-assisted molecular beam epitaxy were investigated. The reflection high-energy electron diffraction pattern indicates formation of a cubic phase at the interface between III-nitride and both Zn- and O-face ZnO. The polarity indicates that Zn-face ZnO leads to a single polarity, while O-face ZnO forms mixed polarity of III-nitrides. Furthermore, by using a vicinal ZnO substrate, the terrace-step growth of GaN was realized with a reduction by two orders of magnitude in the dislocation-related etch pit density to ∼108cm−2, while a dislocation density of ∼1010cm−2 was obtained on the on-axis ZnO substrates.


Journal of Vacuum Science & Technology B | 2007

Reproducible reflection high energy electron diffraction signatures for improvement of AlN using in situ growth regime characterization

Shawn D. Burnham; Gon Namkoong; Kyoung-Keun Lee; W. Alan Doolittle

Recently published methods that answer the previously unresolved critical issue of in situ growth regime determination during molecular beam epitaxy of AlN are used to address issues of material quality and intergrowth nonuniformity for improved repeatability using a modulated flux technique. A shutter modulation growth technique, defined as metal modulation epitaxy (MME), using the previously published reflection high-energy electron diffraction (RHEED) signatures was developed with the goal of obtaining materials with the properties of droplet regime materials, without the adverse effect of droplets. The films grown using MME were compared to films grown with no shutter modulation, and the surface roughness determined by atomic force microscopy was improved. For an unmodulated sample without droplets, the rms surface roughness was 6.9nm, while a sample with droplets had a rms surface roughness of 1.2nm. For the same Al flux that resulted in droplets with the unmodulated sample, the MME sample had no dro...

Collaboration


Dive into the Gon Namkoong's collaboration.

Top Co-Authors

Avatar

W. Alan Doolittle

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tarek M. Abdel-Fattah

Christopher Newport University

View shared research outputs
Top Co-Authors

Avatar

Diefeng Gu

Old Dominion University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter Henderson

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge