Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gonçalo R. Abecasis is active.

Publication


Featured researches published by Gonçalo R. Abecasis.


Bioinformatics | 2009

The Sequence Alignment/Map format and SAMtools

Heng Li; Bob Handsaker; Alec Wysoker; Tim Fennell; Jue Ruan; Nils Homer; Gabor T. Marth; Gonçalo R. Abecasis; Richard Durbin

Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: [email protected]


Nature Genetics | 2002

Merlin — Rapid analysis of dense genetic maps using sparse gene flow trees

Gonçalo R. Abecasis; Stacey S. Cherny; William Cookson; Lon R. Cardon

Efforts to find disease genes using high-density single-nucleotide polymorphism (SNP) maps will produce data sets that exceed the limitations of current computational tools. Here we describe a new, efficient method for the analysis of dense genetic maps in pedigree data that provides extremely fast solutions to common problems such as allele-sharing analyses and haplotyping. We show that sparse binary trees represent patterns of gene flow in general pedigrees in a parsimonious manner, and derive a family of related algorithms for pedigree traversal. With these trees, exact likelihood calculations can be carried out efficiently for single markers or for multiple linked markers. Using an approximate multipoint calculation that ignores the unlikely possibility of a large number of recombinants further improves speed and provides accurate solutions in dense maps with thousands of markers. Our multipoint engine for rapid likelihood inference (Merlin) is a computer program that uses sparse inheritance trees for pedigree analysis; it performs rapid haplotyping, genotype error detection and affected pair linkage analyses and can handle more markers than other pedigree analysis packages.


Science | 2007

A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants.

Laura J. Scott; Karen L. Mohlke; Lori L. Bonnycastle; Cristen J. Willer; Yun Li; William L. Duren; Michael R. Erdos; Heather M. Stringham; Peter S. Chines; Anne U. Jackson; Ludmila Prokunina-Olsson; Chia-Jen Ding; Amy J. Swift; Tianle Hu; Randall Pruim; Rui Xiao; Xiao-Yi Li; Karen N. Conneely; Nancy Riebow; Andrew G. Sprau; Maurine Tong; Peggy P. White; Kurt N. Hetrick; Michael W. Barnhart; Craig W. Bark; Janet L. Goldstein; Lee Watkins; Fang Xiang; Jouko Saramies; Thomas A. Buchanan

Identifying the genetic variants that increase the risk of type 2 diabetes (T2D) in humans has been a formidable challenge. Adopting a genome-wide association strategy, we genotyped 1161 Finnish T2D cases and 1174 Finnish normal glucose-tolerant (NGT) controls with >315,000 single-nucleotide polymorphisms (SNPs) and imputed genotypes for an additional >2 million autosomal SNPs. We carried out association analysis with these SNPs to identify genetic variants that predispose to T2D, compared our T2D association results with the results of two similar studies, and genotyped 80 SNPs in an additional 1215 Finnish T2D cases and 1258 Finnish NGT controls. We identify T2D-associated variants in an intergenic region of chromosome 11p12, contribute to the identification of T2D-associated variants near the genes IGF2BP2 and CDKAL1 and the region of CDKN2A and CDKN2B, and confirm that variants near TCF7L2, SLC30A8, HHEX, FTO, PPARG, and KCNJ11 are associated with T2D risk. This brings the number of T2D loci now confidently identified to at least 10.


Nature Reviews Genetics | 2008

Genome-wide association studies for complex traits: consensus, uncertainty and challenges.

Mark McCarthy; Gonçalo R. Abecasis; Lon R. Cardon; David B. Goldstein; Julian Little; John P. A. Ioannidis; Joel N. Hirschhorn

The past year has witnessed substantial advances in understanding the genetic basis of many common phenotypes of biomedical importance. These advances have been the result of systematic, well-powered, genome-wide surveys exploring the relationships between common sequence variation and disease predisposition. This approach has revealed over 50 disease-susceptibility loci and has provided insights into the allelic architecture of multifactorial traits. At the same time, much has been learned about the successful prosecution of association studies on such a scale. This Review highlights the knowledge gained, defines areas of emerging consensus, and describes the challenges that remain as researchers seek to obtain more complete descriptions of the susceptibility architecture of biomedical traits of interest and to translate the information gathered into improvements in clinical management.


Bioinformatics | 2011

The variant call format and VCFtools

Petr Danecek; Adam Auton; Gonçalo R. Abecasis; Cornelis A. Albers; Eric Banks; Mark A DePristo; Robert E. Handsaker; Gerton Lunter; Gabor T. Marth; Stephen T. Sherry; Gilean McVean; Richard Durbin

Summary: The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API. Availability: http://vcftools.sourceforge.net Contact: [email protected]


Nature Genetics | 2008

Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes

Eleftheria Zeggini; Laura J. Scott; Richa Saxena; Benjamin F. Voight; Jonathan Marchini; Tianle Hu; Paul I. W. de Bakker; Gonçalo R. Abecasis; Peter Almgren; Gitte Andersen; Kristin Ardlie; Kristina Bengtsson Boström; Richard N. Bergman; Lori L. Bonnycastle; Knut Borch-Johnsen; Noël P. Burtt; Hong Chen; Peter S. Chines; Mark J. Daly; Parimal Deodhar; Chia-Jen Ding; Alex S. F. Doney; William L. Duren; Katherine S. Elliott; Michael R. Erdos; Timothy M. Frayling; Rachel M. Freathy; Lauren Gianniny; Harald Grallert; Niels Grarup

Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and ∼2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 × 10−14), CDC123-CAMK1D (P = 1.2 × 10−10), TSPAN8-LGR5 (P = 1.1 × 10−9), THADA (P = 1.1 × 10−9), ADAMTS9 (P = 1.2 × 10−8) and NOTCH2 (P = 4.1 × 10−8) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.


Bioinformatics | 2010

METAL: fast and efficient meta-analysis of genomewide association scans

Cristen J. Willer; Yun Li; Gonçalo R. Abecasis

Summary: METAL provides a computationally efficient tool for meta-analysis of genome-wide association scans, which is a commonly used approach for improving power complex traits gene mapping studies. METAL provides a rich scripting interface and implements efficient memory management to allow analyses of very large data sets and to support a variety of input file formats. Availability and implementation: METAL, including source code, documentation, examples, and executables, is available at http://www.sph.umich.edu/csg/abecasis/metal/ Contact: [email protected]


Genetic Epidemiology | 2010

MaCH: Using Sequence and Genotype Data to Estimate Haplotypes and Unobserved Genotypes

Yun Li; Cristen J. Willer; Jun Ding; Paul Scheet; Gonçalo R. Abecasis

Genome‐wide association studies (GWAS) can identify common alleles that contribute to complex disease susceptibility. Despite the large number of SNPs assessed in each study, the effects of most common SNPs must be evaluated indirectly using either genotyped markers or haplotypes thereof as proxies. We have previously implemented a computationally efficient Markov Chain framework for genotype imputation and haplotyping in the freely available MaCH software package. The approach describes sampled chromosomes as mosaics of each other and uses available genotype and shotgun sequence data to estimate unobserved genotypes and haplotypes, together with useful measures of the quality of these estimates. Our approach is already widely used to facilitate comparison of results across studies as well as meta‐analyses of GWAS. Here, we use simulations and experimental genotypes to evaluate its accuracy and utility, considering choices of genotyping panels, reference panel configurations, and designs where genotyping is replaced with shotgun sequencing. Importantly, we show that genotype imputation not only facilitates cross study analyses but also increases power of genetic association studies. We show that genotype imputation of common variants using HapMap haplotypes as a reference is very accurate using either genome‐wide SNP data or smaller amounts of data typical in fine‐mapping studies. Furthermore, we show the approach is applicable in a variety of populations. Finally, we illustrate how association analyses of unobserved variants will benefit from ongoing advances such as larger HapMap reference panels and whole genome shotgun sequencing technologies. Genet. Epidemiol. 34: 816‐834, 2010.


Nature Genetics | 2008

Newly identified loci that influence lipid concentrations and risk of coronary artery disease

Cristen J. Willer; Serena Sanna; Anne U. Jackson; Angelo Scuteri; Lori L. Bonnycastle; Robert Clarke; Simon Heath; Nicholas J. Timpson; Samer S. Najjar; Heather M. Stringham; James B. Strait; William L. Duren; Andrea Maschio; Fabio Busonero; Antonella Mulas; Giuseppe Albai; Amy J. Swift; Mario A. Morken; Derrick Bennett; Sarah Parish; Haiqing Shen; Pilar Galan; Pierre Meneton; Serge Hercberg; Diana Zelenika; Wei-Min Chen; Yun Li; Laura J. Scott; Paul Scheet; Jouko Sundvall

To identify genetic variants influencing plasma lipid concentrations, we first used genotype imputation and meta-analysis to combine three genome-wide scans totaling 8,816 individuals and comprising 6,068 individuals specific to our study (1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables) and 2,758 individuals from the Diabetes Genetics Initiative, reported in a companion study in this issue. We subsequently examined promising signals in 11,569 additional individuals. Overall, we identify strongly associated variants in eleven loci previously implicated in lipid metabolism (ABCA1, the APOA5-APOA4-APOC3-APOA1 and APOE-APOC clusters, APOB, CETP, GCKR, LDLR, LPL, LIPC, LIPG and PCSK9) and also in several newly identified loci (near MVK-MMAB and GALNT2, with variants primarily associated with high-density lipoprotein (HDL) cholesterol; near SORT1, with variants primarily associated with low-density lipoprotein (LDL) cholesterol; near TRIB1, MLXIPL and ANGPTL3, with variants primarily associated with triglycerides; and a locus encompassing several genes near NCAN, with variants strongly associated with both triglycerides and LDL cholesterol). Notably, the 11 independent variants associated with increased LDL cholesterol concentrations in our study also showed increased frequency in a sample of coronary artery disease cases versus controls.


Nature | 2007

Replicating genotype-phenotype associations.

Stephen J. Chanock; Teri A. Manolio; Michael Boehnke; Eric Boerwinkle; David J. Hunter; Gilles Thomas; Joel N. Hirschhorn; Gonçalo R. Abecasis; David Altshuler; Joan E. Bailey-Wilson; Lisa D. Brooks; Lon R. Cardon; Mark J. Daly; Peter Donnelly; Joseph F. Fraumeni; Nelson B. Freimer; Daniela S. Gerhard; Chris Gunter; Alan E. Guttmacher; Mark S. Guyer; Emily L. Harris; Josephine Hoh; Robert N. Hoover; C. Augustine Kong; Kathleen R. Merikangas; Cynthia C. Morton; Lyle J. Palmer; Elizabeth G. Phimister; John P. Rice; Jerry Roberts

What constitutes replication of a genotype–phenotype association, and how best can it be achieved?

Collaboration


Dive into the Gonçalo R. Abecasis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anand Swaroop

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Cookson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge