Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gong Cheng is active.

Publication


Featured researches published by Gong Cheng.


Chemical Communications | 2011

Synthesis of novel Fe3O4@SiO2@CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labeling

Gong Cheng; Ji-Lin Zhang; Yan-Lin Liu; De-Hui Sun; Jiazuan Ni

Fe(3)O(4)@SiO(2)@CeO(2) microspheres with magnetic core and mesoporous shell were synthesized, and the multifunctional materials were utilized to capture phosphopeptides and catalyze the dephosphorylation simultaneously, thereby labeling the phosphopeptides for rapid identification.


Journal of Materials Chemistry | 2012

The GO/rGO–Fe3O4 composites with good water-dispersibility and fast magnetic response for effective immobilization and enrichment of biomolecules

Gong Cheng; Yan-Lin Liu; Zhigang Wang; Ji-Lin Zhang; De-Hui Sun; Jiazuan Ni

The graphene oxide (GO)–Fe3O4 and the reduced graphene oxide (rGO)–Fe3O4 composites with good water dispersibility, high affinity and rapid magnetic response have been prepared via a facile grafting method. They can be used for the effective immobilization of proteins and the enrichment of peptides, respectively. By taking advantage of the high loading capacity and the abundant hydrophilic groups of the GO–Fe3O4 composites, they can be applied to immobilize proteins. The amount of loading of protein (BSA) on GO–Fe3O4 is as high as 294.54 mg g−1. The rGO–Fe3O4 composites can be used to enrich the low-concentration peptides conveniently due to their high surface areas, special structures and strong magnetism. Nineteen target peptides with the sequence coverage of 21% can be enriched and detected from the highly diluted digest of BSA (5 fmol μL−1). These results reveal that the prepared GO/rGO–Fe3O4 composites have potential application as a carrier for biomolecule immobilization, enrichment, and separation.


Chemistry: A European Journal | 2012

Monodisperse REPO4 (RE=Yb, Gd, Y) Hollow Microspheres Covered with Nanothorns as Affinity Probes for Selectively Capturing and Labeling Phosphopeptides

Gong Cheng; Ji-Lin Zhang; Yan-Lin Liu; De-Hui Sun; Jiazuan Ni

Rare-earth phosphate microspheres with unique structures were developed as affinity probes for the selective capture and tagging of phosphopeptides. Prickly REPO(4) (RE = Yb, Gd, Y) monodisperse microspheres, that have hollow structures, low densities, high specific surface areas, and large adsorptive capacities were prepared by an ion-exchange method. The elemental compositions and crystal structures of these affinity probes were confirmed by energy-dispersive spectroscopy (EDS), powder X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. The morphologies of these compounds were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen-adsorption isotherms. The potential ability of these microspheres for selectively capturing and labeling target biological molecules was evaluated by using protein-digestion analysis and a real sample as well as by comparison with the widely used TiO(2) affinity microspheres. These results show that these porous rare-earth phosphate microspheres are highly promising probes for the rapid purification and recognition of phosphopeptides.


ACS Applied Materials & Interfaces | 2014

Facile synthesis of magnetic mesoporous hollow carbon microspheres for rapid capture of low-concentration peptides.

Gong Cheng; Ming-Da Zhou; Siyang Zheng

Mesoporous and hollow carbon microspheres embedded with magnetic nanoparticles (denoted as MHM) were prepared via a facile self-sacrificial method for rapid capture of low-abundant peptides from complex biological samples. The morphology, structure, surface property, and magnetism were well-characterized. The hollow magnetic carbon microspheres have a saturation magnetization value of 130.2 emu g–1 at room temperature and a Brunauer–Emmett–Teller specific surface area of 48.8 m2 g–1 with an average pore size of 9.2 nm for the mesoporous carbon shell. The effectiveness of these MHM affinity microspheres for capture of low-concentration peptides was evaluated by standard peptides, complex protein digests, and real biological samples. These multifunctional hollow carbon microspheres can realize rapid capture and convenient separation of low-concentration peptides. They were validated to have better performance than magnetic mesoporous silica and commercial peptide-enrichment products. In addition, they can be easily recycled and present excellent reusability. Therefore, it is expected that this work may provide a promising tool for high-throughput discovery of peptide biomarkers from biological samples for disease diagnosis and other biomedical applications.


Small | 2012

Fabrication of Novel Hierarchical Structured Fe3O4@LnPO4 (Ln=Eu, Tb, Er) Multifunctional Microspheres for Capturing and Labeling Phosphopeptides

Zhi-Gang Wang; Gong Cheng; Yan-Lin Liu; Ji-Lin Zhang; De-Hui Sun; Jiazuan Ni

Novel core-shell structured Fe3O4@LnPO4 (Ln=Eu, Tb, Er) multifunctional microspheres with a magnetic Fe3O4 core and a LnPO4 shell covered with spikes are synthesized for the first time through the combination of a homogeneous precipitation approach and an ion-exchange process. Their potential for selective capture, rapid separation, and easy mass spectrometry (MS) labeling of the phosphopeptides from complex proteolytic digests are evaluated. These affinity microspheres can improve the specificity for capture of the phosphopeptides, realize fast magnetic separation, enhance the MS detection signals, and directly identify phosphopeptides through 80 Da mass loss in the mass spectra. The synthesis strategy could become a general and effective technique for similar core-shell hierarchical structures.


Scientific Reports | 2015

Construction of a high-performance magnetic enzyme nanosystem for rapid tryptic digestion

Gong Cheng; Siyang Zheng

A magnetic enzyme nanosystem have been designed and constructed by a polydopamine (PDA)-modification strategy. The magnetic enzyme nanosystem has well defined core-shell structure and a relatively high saturation magnetization (Ms) value of 48.3 emu g−1. The magnetic enzyme system can realize rapid, efficient and reusable tryptic digestion of proteins by taking advantage of its magnetic core and biofunctional shell. Various standard proteins (e.g. cytochrome C (Cyt-C), myoglobin (MYO) and bovine serum albumin (BSA)) have been used to evaluate the effectiveness of the magnetic enzyme nanosystem. The results show that the magnetic enzyme nanosystem can digest the proteins in 30 minutes, and the results are comparable to conventional 12 hours in-solution digestion. Furthermore, the magnetic enzyme nanosystem is also effective in the digestion of low-concentration proteins, even at as low as 5 ng μL−1 substrate concentration. Importantly, the system can be reused several times, and has excellent stability for storage. Therefore, this work will be highly beneficial for the rapid digestion and identification of proteins in future proteomics.


Chemical Communications | 2012

A graphene-based multifunctional affinity probe for selective capture and sequential identification of different biomarkers from biosamples

Gong Cheng; Zhi-Gang Wang; Yan-Lin Liu; Ji-Lin Zhang; De-Hui Sun; Jiazuan Ni

A novel multifunctional graphene-based affinity probe has been explored for selective capture of two different types of peptides from the biosamples for sequential detection.


Journal of Colloid and Interface Science | 2014

Novel core-shell Cerium(IV)-immobilized magnetic polymeric microspheres for selective enrichment and rapid separation of phosphopeptides

Zhigang Wang; Gong Cheng; Yan-Lin Liu; Ji-Lin Zhang; De-Hui Sun; Jiazuan Ni

In this work, novel magnetic polymeric core-shell structured microspheres with immobilized Ce(IV), Fe3O4@SiO2@PVPA-Ce(IV), were designed rationally and synthesized successfully via a facile route for the first time. Magnetic Fe3O4@SiO2 microspheres were first prepared by directly coating a thin layer of silica onto Fe3O4 magnetic particles using a sol-gel method, a poly(vinylphosphonic acid) (PVPA) shell was then coated on the Fe3O4@SiO2 microspheres to form Fe3O4@SiO2@PVPA microspheres through a radical polymerization reaction, and finally Ce(IV) ions were robustly immobilized onto the Fe3O4@SiO2@PVPA microspheres through strong chelation between Ce(IV) ions and phosphate moieties in the PVPA. The applicability of the Fe3O4@SiO2@PVPA-Ce(IV) microspheres for selective enrichment and rapid separation of phosphopeptides from proteolytic digests of standard and real protein samples was investigated. The results demonstrated that the core-shell structured Fe3O4@SiO2@PVPA-Ce(IV) microspheres with abundant Ce(IV) affinity sites and excellent magnetic responsiveness can effectively purify phosphopeptides from complex biosamples for MS detection taking advantage of the rapid magnetic separation and the selective affinity between Ce(IV) ions and phosphate moieties of the phosphopeptides. Furthermore, they can be effectively recycled and show good reusability, and have better performance than commercial TiO2 beads and homemade Fe3O4@PMAA-Ce(IV) microspheres. Thus the Fe3O4@SiO2@PVPA-Ce(IV) microspheres can benefit greatly the mass spectrometric qualitative analysis of phosphopeptides in phosphoproteome research.


Nature Biomedical Engineering | 2017

Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes

Yuan Wan; Gong Cheng; Xin Liu; Si Jie Hao; Merisa Nisic; Chuan Dong Zhu; Yi Qiu Xia; Wen-Qing Li; Zhi-Gang Wang; Wen Long Zhang; Shawn J. Rice; Aswathy Sebastian; Istvan Albert; Chandra P. Belani; Siyang Zheng

Extracellular vesicles (EVs) can mediate intercellular communication by transferring cargo proteins and nucleic acids between cells. The pathophysiological roles and clinical value of EVs are under intense investigation, yet most studies are limited by technical challenges in the isolation of nanoscale EVs (nEVs). Here, we report a lipid nanoprobe that enables spontaneous labelling and magnetic enrichment of nEVs in 15 minutes, with isolation efficiency and cargo composition similar to what can be achieved by the much slower and bulkier method of ultracentrifugation. We also show that the lipid nanoprobes, which allow for downstream analyses of nucleic acids and proteins, enabled the identification of EGFR and KRAS mutations following nEV isolation from blood plasma from non-small-cell lung-cancer patients. The efficiency and versatility of the lipid nanoprobe opens up opportunities in point-of-care cancer diagnostics.


ACS Applied Materials & Interfaces | 2016

Graphene-Templated Synthesis of Magnetic Metal Organic Framework Nanocomposites for Selective Enrichment of Biomolecules.

Gong Cheng; Zhi-Gang Wang; Sachira Denagamage; Siyang Zheng

Successful control of homogeneous and complete coating of graphene or graphene-based composites with well-defined metal organic framework (MOF) layers is a great challenge. Herein, novel magnetic graphene MOF composites were constructed via a simple strategy for self-assembly of well-distributed, dense, and highly porous MOFs on both sides of graphene nanosheets. Graphene functionalized with magnetic nanoparticles and carboxylic groups on both sides was explored as the backbone and template to direct the controllable self-assembly of MOFs. The prepared composite materials have a relatively high specific surface area (345.4 m(2) g(-1)), and their average pore size is measured to be 3.2 nm. Their relatively high saturation magnetization (23.8 emu g(-1)) indicates their strong magnetism at room temperature. Moreover, the multifunctional composite was demonstrated to be a highly effective affinity material in selective extraction and separation of low-concentration biomolecules from biological samples, in virtue of the size-selection property of the unique porous structure and the excellent affinity of the composite materials. Besides providing a solution for the construction of well-defined functional graphene-based MOFs, this work could also contribute to selective extraction of biomolecules, in virtue of the universal affinity between immobilized metal ions and biomolecules.

Collaboration


Dive into the Gong Cheng's collaboration.

Top Co-Authors

Avatar

Siyang Zheng

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Ji-Lin Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan-Lin Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sijie Hao

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Yuan Wan

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Wen-Qing Li

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Zhi-Gang Wang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Yiqiu Xia

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge