Gong-Li Tang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gong-Li Tang.
Natural Product Reports | 2013
Paul G. Arnison; Mervyn J. Bibb; Gabriele Bierbaum; Albert A. Bowers; Tim S. Bugni; Grzegorz Bulaj; Julio A. Camarero; Dominic J. Campopiano; Gregory L. Challis; Jon Clardy; Paul D. Cotter; David J. Craik; Michael J. Dawson; Elke Dittmann; Stefano Donadio; Pieter C. Dorrestein; Karl Dieter Entian; Michael A. Fischbach; John S. Garavelli; Ulf Göransson; Christian W. Gruber; Daniel H. Haft; Thomas K. Hemscheidt; Christian Hertweck; Colin Hill; Alexander R. Horswill; Marcel Jaspars; Wendy L. Kelly; Judith P. Klinman; Oscar P. Kuipers
This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Yi-Qiang Cheng; Gong-Li Tang; Ben Shen
Type I polyketide synthases (PKSs) are multifunctional enzymes that are organized into modules, each of which minimally contains a β-ketoacyl synthase, an acyltransferase (AT), and an acyl carrier protein. Here we report that the leinamycin (LNM) biosynthetic gene cluster from Streptomyces atroolivaceus S-140 consists of two PKS genes, lnmI and lnmJ, that encode six PKS modules, none of which contain the cognate AT domain. The only AT activity identified within the lnm gene cluster is a discrete AT protein encoded by lnmG. Inactivation of lnmG, lnmI, or lnmJ in vivo abolished LNM biosynthesis. Biochemical characterization of LnmG in vitro showed that it efficiently and specifically loaded malonyl CoA to all six PKS modules. These findings unveiled a previously unknown PKS architecture that is characterized by a discrete, iteratively acting AT protein that loads the extender units in trans to “AT-less” multifunctional type I PKS proteins for polyketide biosynthesis. This PKS structure provides opportunities for PKS engineering as exemplified by overexpressing lnmG to improve LNM production.
ACS Chemical Biology | 2009
Yi Yu; Lian Duan; Qi Zhang; Rijing Liao; Ying Ding; Hai-Xue Pan; Evelyn Wendt-Pienkowski; Gong-Li Tang; Ben Shen; Wen Liu
Nosiheptide (NOS), belonging to the e series of thiopeptide antibiotics that exhibit potent activity against various bacterial pathogens, bears a unique indole side ring system and regiospecific hydroxyl groups on the characteristic macrocyclic core. Here, cloning, sequencing, and characterization of the nos gene cluster from Streptomyces actuosus ATCC 25421 as a model for this series of thiopeptides has unveiled new insights into their biosynthesis. Bioinformatics-based sequence analysis and in vivo investigation into the gene functions show that NOS biosynthesis shares a common strategy with recently characterized b or c series thiopeptides for forming the characteristic macrocyclic core, which features a ribosomally synthesized precursor peptide with conserved posttranslational modifications. However, it apparently proceeds via a different route for tailoring the thiopeptide framework, allowing the final product to exhibit the distinct structural characteristics of e series thiopeptides, such as the indole side ring system. Chemical complementation supports the notion that the S-adenosylmethionine-dependent protein NosL may play a central role in converting tryptophan to the key 3-methylindole moiety by an unusual carbon side chain rearrangement, most likely via a radical-initiated mechanism. Characterization of the indole side ring-opened analogue of NOS from the nosN mutant strain is consistent with the proposed methyltransferase activity of its encoded protein, shedding light into the timing of the individual steps for indole side ring biosynthesis. These results also suggest the feasibility of engineering novel thiopeptides for drug discovery by manipulating the NOS biosynthetic machinery.
Journal of Bacteriology | 2008
Lei Li; Wei Deng; Jie Song; Wei Ding; Qunfei Zhao; Chao Peng; Wei-Wen Song; Gong-Li Tang; Wen Liu
Saframycin A (SFM-A), produced by Streptomyces lavendulae NRRL 11002, belongs to the tetrahydroisoquinoline family of antibiotics, and its core is structurally similar to the core of ecteinascidin 743, which is a highly potent antitumor drug isolated from a marine tunicate. In this study, the biosynthetic gene cluster for SFM-A was cloned and localized to a 62-kb contiguous DNA region. Sequence analysis revealed 30 genes that constitute the SFM-A gene cluster, encoding an unusual nonribosomal peptide synthetase (NRPS) system and tailoring enzymes and regulatory and resistance proteins. The results of substrate prediction and in vitro characterization of the adenylation specificities of this NRPS system support the hypothesis that the last module acts in an iterative manner to form a tetrapeptidyl intermediate and that the colinearity rule does not apply. Although this mechanism is different from those proposed for the SFM-A analogs SFM-Mx1 and safracin B (SAC-B), based on the high similarity of these systems, it is likely they share a common mechanism of biosynthesis as we describe here. Construction of the biosynthetic pathway of SFM-Y3, an aminated SFM-A, was achieved in the SAC-B producer (Pseudomonas fluorescens). These findings not only shed new insight on tetrahydroisoquinoline biosynthesis but also demonstrate the feasibility of engineering microorganisms to generate structurally more complex and biologically more active analogs by combinatorial biosynthesis.Saframycin A (SFM-A), produced by Streptomyces lavendulae NRRL 11002, belongs to the tetrahydroisoquinoline family of antibiotics, and its core is structurally similar to the core of ecteinascidin 743, which is a highly potent antitumor drug isolated from a marine tunicate. In this study, the biosynthetic gene cluster for SFM-A was cloned and localized to a 62-kb contiguous DNA region. Sequence analysis revealed 30 genes that constitute the SFM-A gene cluster, encoding an unusual nonribosomal peptide synthetase (NRPS) system and tailoring enzymes and regulatory and resistance proteins. The results of substrate prediction and in vitro characterization of the adenylation specificities of this NRPS system support the hypothesis that the last module acts in an iterative manner to form a tetrapeptidyl intermediate and that the colinearity rule does not apply. Although this mechanism is different from those proposed for the SFM-A analogs SFM-Mx1 and safracin B (SAC-B), based on the high similarity of these systems, it is likely they share a common mechanism of biosynthesis as we describe here. Construction of the biosynthetic pathway of SFM-Y3, an aminated SFM-A, was achieved in the SAC-B producer (Pseudomonas fluorescens). These findings not only shed new insight on tetrahydroisoquinoline biosynthesis but also demonstrate the feasibility of engineering microorganisms to generate structurally more complex and biologically more active analogs by combinatorial biosynthesis.
Journal of Bacteriology | 2002
Yi-Qiang Cheng; Gong-Li Tang; Ben Shen
Leinamycin (LNM), produced by Streptomyces atroolivaceus, is a thiazole-containing hybrid peptide-polyketide natural product structurally characterized with an unprecedented 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a 18-member macrolactam ring. LNM exhibits a broad spectrum of antimicrobial and antitumor activities, most significantly against tumors that are resistant to clinically important anticancer drugs, resulting from its DNA cleavage activity in the presence of a reducing agent. Using a PCR approach to clone a thiazole-forming nonribosomal peptide synthetase (NRPS) as a probe, we localized a 172-kb DNA region from S. atroolivaceus S-140 that harbors the lnm biosynthetic gene cluster. Sequence analysis of 11-kb DNA revealed three genes, lnmG, lnmH, and lnmI, and the deduced product of lnmI is characterized by domains characteristic to both NRPS and polyketide synthase (PKS). The involvement of the cloned gene cluster in LNM biosynthesis was confirmed by disrupting the lnmI gene to generate non-LNM-producing mutants and by characterizing LnmI as a hybrid NRPS-PKS megasynthetase, the NRPS module of which specifies for L-Cys and catalyzes thiazole formation. These results have now set the stage for full investigations of LNM biosynthesis and for generation of novel LNM analogs by combinatorial biosynthesis.
Chemistry & Biology | 2008
Qunfei Zhao; Qingli He; Wei Ding; Man-Cheng Tang; Qianjin Kang; Yi Yu; Wei Deng; Qi Zhang; Jie Fang; Gong-Li Tang; Wen Liu
Azinomycin B is a complex natural product containing densely assembled functionalities with potent antitumor activity. Cloning and sequence analysis of the azi gene cluster revealed an iterative type I polyketide synthase (PKS) gene, five nonribosomal peptide synthetases (NRPSs) genes and numerous genes encoding the biosynthesis of unusual building blocks and tailoring steps for azinomycin B production. Characterization of AziB as a 5-methyl-naphthoic acid (NPA) synthase showed a distinct selective reduction pattern in aromatic polyketide biosynthesis governed by bacterial iterative type I PKSs. Heterologous expression established the PKS-post modification route from 5-methyl-NPA to reach the first building block 3-methoxy-5-methyl-NPA. This proposed azinomycin B biosynthetic pathway sets the stage to investigate the enzymatic mechanisms for building structurally unique and pharmaceutically important groups, including the unprecedented azabicyclic ring system and highly active epoxide moiety.
Journal of Bacteriology | 2008
Jie Fang; Yiping Zhang; Lijuan Huang; Xinying Jia; Qi Zhang; Xu Zhang; Gong-Li Tang; Wen Liu
Tetrocarcin A (TCA), produced by Micromonospora chalcea NRRL 11289, is a spirotetronate antibiotic with potent antitumor activity and versatile modes of action. In this study, the biosynthetic gene cluster of TCA was cloned and localized to a 108-kb contiguous DNA region. In silico sequence analysis revealed 36 putative genes that constitute this cluster (including 11 for unusual sugar biosynthesis, 13 for aglycone formation, and 4 for glycosylations) and allowed us to propose the biosynthetic pathway of TCA. The formation of D-tetronitrose, L-amicetose, and L-digitoxose may begin with D-glucose-1-phosphate, share early enzymatic steps, and branch into different pathways by competitive actions of specific enzymes. Tetronolide biosynthesis involves the incorporation of a 3-C unit with a polyketide intermediate to form the characteristic spirotetronate moiety and trans-decalin system. Further substitution of tetronolide with five deoxysugars (one being a deoxynitrosugar) was likely due to the activities of four glycosyltransferases. In vitro characterization of the first enzymatic step by utilization of 1,3-biphosphoglycerate as the substrate and in vivo cross-complementation of the bifunctional fused gene tcaD3 (with the functions of chlD3 and chlD4) to Delta chlD3 and Delta chlD4 in chlorothricin biosynthesis supported the highly conserved tetronate biosynthetic strategy in the spirotetronate family. Deletion of a large DNA fragment encoding polyketide synthases resulted in a non-TCA-producing strain, providing a clear background for the identification of novel analogs. These findings provide insights into spirotetronate biosynthesis and demonstrate that combinatorial-biosynthesis methods can be applied to the TCA biosynthetic machinery to generate structural diversity.
Journal of Natural Products | 2013
Xiangyang Liu; Sreya Biswas; Michael G. Berg; Christopher M. Antapli; Feng Xie; Qi Wang; Man-Cheng Tang; Gong-Li Tang; Lixin Zhang; Gideon Dreyfuss; Yi-Qiang Cheng
Mining the genome sequence of Burkholderia thailandensis MSMB43 revealed a cryptic biosynthetic gene cluster resembling that of FR901464 (4), a prototype spliceosome inhibitor produced by Pseudomonas sp. No. 2663. Transcriptional analysis revealed a cultivation condition in which a regulatory gene of the cryptic gene cluster is adequately expressed. Consequently, three new compounds, named thailanstatins A (1), B (2), and C (3), were isolated from the fermentation broth of B. thailandensis MSMB43. Thailanstatins are proposed to be biosynthesized by a hybrid polyketide synthase-nonribosomal peptide synthetase pathway. They differ from 4 by lacking an unstable hydroxyl group and by having an extra carboxyl moiety; those differences endow thailanstatins with a significantly greater stability than 4 as tested in phosphate buffer at pH 7.4. In vitro assays showed that thailanstatins inhibit pre-mRNA splicing as potently as 4, with half-maximal inhibitory concentrations in the single to sub-μM range. Cell culture assays indicated that thailanstatins also possess potent antiproliferative activities in representative human cancer cell lines, with half-maximal growth inhibitory concentrations in the single nM range. This work provides new chemical entities for research and development and new structure-activity information for chemical optimization of related spliceosome inhibitors.
Molecular BioSystems | 2011
Xudong Qu; Nan Jiang; Fei Xu; Lei Shao; Gong-Li Tang; Barrie Wilkinson; Wen Liu
Sanglifehrin A (SFA), a potent cyclophilin inhibitor produced by Streptomyces flaveolus DSM 9954, bears a unique [5.5] spirolactam moiety conjugated with a 22-membered, highly functionalized macrolide through a linear carbon chain. SFA displays a diverse range of biological activities and offers significant therapeutic potential. However, the structural complexity of SFA poses a tremendous challenge for new analogue development via chemical synthesis. Based on a rational prediction of its biosynthetic origin, herein we report the cloning, sequencing and characterization of the gene cluster responsible for SFA biosynthesis. Analysis of the 92 776 bp contiguous DNA region reveals a mixed polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) pathway which includes a variety of unique features for unusual PKS and NRPS building block formation. Our findings suggest that SFA biosynthesis requires a crotonyl-CoA reductase/carboxylase (CCR) for generation of the putative unusual PKS starter unit (2R)-2-ethylmalonamyl-CoA, an iterative type I PKS for the putative atypical extender unit (2S)-2-(2-oxo-butyl)malonyl-CoA and a phenylalanine hydroxylase for the NRPS extender unit (2S)-m-tyrosine. A spontaneous ketalization of significant note, may trigger spirolactam formation in a stereo-selective manner. This study provides a framework for the application of combinatorial biosynthesis methods in order to expand the structural diversity of SFA.
Journal of Biological Chemistry | 2007
Gong-Li Tang; Yi-Qiang Cheng; Ben Shen
Nonribosomal peptide natural products are biosynthesized from amino acid precursors by nonribosomal peptide synthetases (NRPSs), which are organized into modules. For a typical NRPS initiation module, an adenylation (A) domain activates an amino acid and installs it onto a peptidyl carrier protein (PCP) domain as a thioester; an elongation module, which has a condensation (C) domain located between every consecutive pair of A and PCP domains, catalyzes the formation of the peptide bond between the upstream aminoacyl/peptidyl-S-PCP and the free amino group of the downstream aminoacyl-S-PCP. d-Amino acid constituents in peptide natural products usually arise from the l-enantiomers through the action of integral epimerization (E) domains of an NRPS. The biosynthetic gene cluster for leinamycin, a hybrid nonribosomal peptide/polyketide containing a d-alanine moiety, does not encode a typical NRPS initiation module with the expected A-PCP-E domains; instead, it has only an A protein (LnmQ) and a PCP (LnmP), both of which are encoded by separate genes. Here we show the results of biochemical experiments as follows: (i) we demonstrate that LnmQ directly activates d-alanine as d-alaninyl-AMP and installs it onto LnmP to generate a d-alaninyl-S-PCP intermediate; (ii) we confirm that aminoacylation of LnmP by LnmQ in trans is the result of specific communication between the separate A and PCP proteins; and (iii) we reveal that leinamycin production can be improved by supplementation of exogenous d-alanine in the fermentation broth of Streptomyces atroolivaceous S-140. These findings unveil an unprecedented NRPS initiation module structure that is characterized by a discrete d-alanine-specific A protein and a PCP.