Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gongke Zhou is active.

Publication


Featured researches published by Gongke Zhou.


The Plant Cell | 2007

Arabidopsis irregular xylem8 and irregular xylem9: Implications for the Complexity of Glucuronoxylan Biosynthesis

Maria J. Peña; Ruiqin Zhong; Gongke Zhou; Elizabeth A. Richardson; Malcolm A. O'Neill; Alan G. Darvill; William S. York; Zheng-Hua Ye

Mutations of Arabidopsis thaliana IRREGULAR XYLEM8 (IRX8) and IRX9 were previously shown to cause a collapsed xylem phenotype and decreases in xylose and cellulose in cell walls. In this study, we characterized IRX8 and IRX9 and performed chemical and structural analyses of glucuronoxylan (GX) from irx8 and irx9 plants. IRX8 and IRX9 are expressed specifically in cells undergoing secondary wall thickening, and their encoded proteins are targeted to the Golgi, where GX is synthesized. 1H-NMR spectroscopy showed that the reducing end of Arabidopsis GX contains the glycosyl sequence 4-β-d-Xylp-(1→4)-β-d-Xylp-(1→3)-α-l-Rhap-(1→2)-α-d-GalpA-(1→4)-d-Xylp, which was previously identified in birch (Betula verrucosa) and spruce (Picea abies) GX. This indicates that the reducing end structure of GXs is evolutionarily conserved in woody and herbaceous plants. This sequence is more abundant in irx9 GX than in the wild type, whereas irx8 and fragile fiber8 (fra8) plants are nearly devoid of it. The number of GX chains increased and the GX chain length decreased in irx9 plants. Conversely, the number of GX chains decreased and the chain length heterodispersity increased in irx8 and fra8 plants. Our results suggest that IRX9 is required for normal GX elongation and indicate roles for IRX8 and FRA8 in the synthesis of the glycosyl sequence at the GX reducing end.


The Plant Cell | 2005

Arabidopsis Fragile Fiber8, Which Encodes a Putative Glucuronyltransferase, Is Essential for Normal Secondary Wall Synthesis

Ruiqin Zhong; Maria J. Peña; Gongke Zhou; C. Joseph Nairn; Alicia Wood-Jones; Elizabeth A. Richardson; W. Herbert Morrison; Alan G. Darvill; William S. York; Zheng-Hua Ye

Secondary walls in vessels and fibers of dicotyledonous plants are mainly composed of cellulose, xylan, and lignin. Although genes involved in biosynthesis of cellulose and lignin have been intensively studied, little is known about genes participating in xylan synthesis. We found that Arabidopsis thaliana fragile fiber8 (fra8) is defective in xylan synthesis. The fra8 mutation caused a dramatic reduction in fiber wall thickness and a decrease in stem strength. FRA8 was found to encode a member of glycosyltransferase family 47 and exhibits high sequence similarity to tobacco (Nicotiana plumbaginifolia) pectin glucuronyltransferase. FRA8 is expressed specifically in developing vessels and fiber cells, and FRA8 is targeted to Golgi. Comparative analyses of cell wall polysaccharide fractions from fra8 and wild-type stems showed that the xylan and cellulose contents are drastically reduced in fra8, whereas xyloglucan and pectin are elevated. Further structural analysis of cell walls revealed that although wild-type xylans contain both glucuronic acid and 4-O-methylglucuronic acid residues, xylans from fra8 retain only 4-O-methylglucuronic acid, indicating that the fra8 mutation results in a specific defect in the addition of glucuronic acid residues onto xylans. These findings suggest that FRA8 is a glucuronyltransferase involved in the biosynthesis of glucuronoxylan during secondary wall formation.


BMC Plant Biology | 2010

Comprehensive Analysis of NAC Domain Transcription Factor Gene Family in Populus trichocarpa

Ruibo Hu; Guang Qi; Yingzhen Kong; Dejing Kong; Qian Gao; Gongke Zhou

BackgroundNAC (NAM, ATAF1/2 and CUC2) domain proteins are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. NAC transcription factors comprise of a large gene family represented by more than 100 members in Arabidopsis, rice and soybean etc. Recently, a preliminary phylogenetic analysis was reported for NAC gene family from 11 plant species. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, conserved motifs, and expression profiling analysis has been presented thus far for the model tree species Populus.ResultsIn the present study, a comprehensive analysis of NAC gene family in Populus was performed. A total of 163 full-length NAC genes were identified in Populus, and they were phylogeneticly clustered into 18 distinct subfamilies. The gene structure and motif compositions were considerably conserved among the subfamilies. The distributions of 120 Populus NAC genes were non-random across the 19 linkage groups (LGs), and 87 genes (73%) were preferentially retained duplicates that located in both duplicated regions. The majority of NACs showed specific temporal and spatial expression patterns based on EST frequency and microarray data analyses. However, the expression patterns of a majority of duplicate genes were partially redundant, suggesting the occurrence of subfunctionalization during subsequent evolutionary process. Furthermore, quantitative real-time RT-PCR (RT-qPCR) was performed to confirm the tissue-specific expression patterns of 25 NAC genes.ConclusionBased on the genomic organizations, we can conclude that segmental duplications contribute significantly to the expansion of Populus NAC gene family. The comprehensive expression profiles analysis provides first insights into the functional divergence among members in NAC gene family. In addition, the high divergence rate of expression patterns after segmental duplications indicates that NAC genes in Populus are likewise to have been retained by substantial subfunctionalization. Taken together, our results presented here would be helpful in laying the foundation for functional characterization of NAC gene family and further gaining an understanding of the structure-function relationship between these family members.


Nature Communications | 2013

Genomic insights into salt adaptation in a desert poplar

Tao Ma; Wang J; Gongke Zhou; Zhen Yue; Quanjun Hu; Yan Chen; Bingbing Liu; Qiang Qiu; Zhuo Wang; Jian Zhang; Kun Wang; Dechun Jiang; Caiyun Gou; Lili Yu; Dongliang Zhan; Ran Zhou; Wenchun Luo; Hui Ma; Yongzhi Yang; Shengkai Pan; Dongming Fang; Yadan Luo; Xia Wang; Gaini Wang; Juan Wang; Qian Wang; Xu Lu; Zhe Chen; Jinchao Liu; Yao Lu

Despite the high economic and ecological importance of forests, our knowledge of the genomic evolution of trees under salt stress remains very limited. Here we report the genome sequence of the desert poplar, Populus euphratica, which exhibits high tolerance to salt stress. Its genome is very similar and collinear to that of the closely related mesophytic congener, P. trichocarpa. However, we find that several gene families likely to be involved in tolerance to salt stress contain significantly more gene copies within the P. euphratica lineage. Furthermore, genes showing evidence of positive selection are significantly enriched in functional categories related to salt stress. Some of these genes, and others within the same categories, are significantly upregulated under salt stress relative to their expression in another salt-sensitive poplar. Our results provide an important background for understanding tree adaptation to salt stress and facilitating the genetic improvement of cultivated poplars for saline soils.


PLOS ONE | 2012

Genome-Wide Identification, Evolutionary Expansion, and Expression Profile of Homeodomain-Leucine Zipper Gene Family in Poplar (Populus trichocarpa)

Ruibo Hu; Xiaoyuan Chi; Guohua Chai; Yingzhen Kong; Guo He; Xiaoyu Wang; Dachuan Shi; Dongyuan Zhang; Gongke Zhou

Background Homeodomain-leucine zipper (HD-ZIP) proteins are plant-specific transcriptional factors known to play crucial roles in plant development. Although sequence phylogeny analysis of Populus HD-ZIPs was carried out in a previous study, no systematic analysis incorporating genome organization, gene structure, and expression compendium has been conducted in model tree species Populus thus far. Principal Findings In this study, a comprehensive analysis of Populus HD-ZIP gene family was performed. Sixty-three full-length HD-ZIP genes were found in Populus genome. These Populus HD-ZIP genes were phylogenetically clustered into four distinct subfamilies (HD-ZIP I–IV) and predominately distributed across 17 linkage groups (LG). Fifty genes from 25 Populus paralogous pairs were located in the duplicated blocks of Populus genome and then preferentially retained during the sequential evolutionary courses. Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus HD-ZIP gene family. Microarray analysis has shown that 21 Populus paralogous pairs have been differentially expressed across different tissues and under various stresses, with five paralogous pairs showing nearly identical expression patterns, 13 paralogous pairs being partially redundant and three paralogous pairs diversifying significantly. Quantitative real-time RT-PCR (qRT-PCR) analysis performed on 16 selected Populus HD-ZIP genes in different tissues and under both drought and salinity stresses confirms their tissue-specific and stress-inducible expression patterns. Conclusions Genomic organizations indicated that segmental duplications contributed significantly to the expansion of Populus HD-ZIP gene family. Exon/intron organization and conserved motif composition of Populus HD-ZIPs are highly conservative in the same subfamily, suggesting the members in the same subfamilies may also have conservative functionalities. Microarray and qRT-PCR analyses showed that 89% (56 out of 63) of Populus HD-ZIPs were duplicate genes that might have been retained by substantial subfunctionalization. Taken together, these observations may lay the foundation for future functional analysis of Populus HD-ZIP genes to unravel their biological roles.


Bioresource Technology | 2014

Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production.

Yubin Ma; Zhiyao Wang; Changjiang Yu; Yehu Yin; Gongke Zhou

Nannochloropsis have attracted sustained interest from algal biodiesel researchers due to their high biomass accumulation rate and high lipid content. There are six recognized species in the Nannochloropsis genus that are phylogenetically divided into Nannochloropsis gaditana, Nannochloropsis salina, Nannochloropsis granulata, Nannochloropsis limnetica, Nannochloropsis oceanica and Nannochloropsis oculata. In this study, the potential of 9 Nannochloropsis species from the 6 genus for biodiesel production was evaluated by determining their growth rate, biomass accumulation, lipid productivity, lipid composition, fatty acid profiles and biodiesel properties. The results showed that the best strain was N. oceanica IMET1, with lipid productivity of 158.76 ± 13.83 mg L(-1)day(-1), TAG production of 1.67 ± 0.20 g/L, favorable fatty acid profiles of C16-C18 (56.62 ± 1.96%) as well as suitable biodiesel properties of higher cetane number (54.61 ± 0.25), lower iodine number (104.85 ± 2.80 g I2/100g) and relative low cloud point (3.45 ± 0.50°C). N. oceanica IMET1 could be consider as valuable feedstock for microalgal biodiesel production.


BMC Genomics | 2012

Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa)

Guohua Chai; Ruibo Hu; Dongyuan Zhang; Guang Qi; Ran Zuo; Yingping Cao; Peng Chen; Yingzhen Kong; Gongke Zhou

BackgroundCCCH zinc finger proteins contain a typical motif of three cysteines and one histidine residues and serve regulatory functions at all stages of mRNA metabolism. In plants, CCCH type zinc finger proteins comprise a large gene family represented by 68 members in Arabidopsis and 67 in rice. These CCCH proteins have been shown to play diverse roles in plant developmental processes and environmental responses. However, this family has not been studied in the model tree species Populus to date.ResultsIn the present study, a comprehensive analysis of the genes encoding CCCH zinc finger family in Populus was performed. Using a thorough annotation approach, a total of 91 full-length CCCH genes were identified in Populus, of which most contained more than one CCCH motif and a type of non-conventional C-X11-C-X6-C-X3-H motif was unique for Populus. All of the Populus CCCH genes were phylogeneticly clustered into 13 distinct subfamilies. In each subfamily, the gene structure and motif composition were relatively conserved. Chromosomal localization of these genes revealed that most of the CCCHs (81 of 90, 90 %) are physically distributed on the duplicated blocks. Thirty-four paralogous pairs were identified in Populus, of which 22 pairs (64.7 %) might be created by the whole genome segment duplication, whereas 4 pairs seem to be resulted from tandem duplications. In 91 CCCH proteins, we also identified 63 putative nucleon-cytoplasm shuttling proteins and 3 typical RNA-binding proteins. The expression profiles of all Populus CCCH genes have been digitally analyzed in six tissues across different developmental stages, and under various drought stress conditions. A variety of expression patterns of CCCH genes were observed during Populus development, of which 34 genes highly express in root and 22 genes show the highest level of transcript abundance in differentiating xylem. Quantitative real-time RT-PCR (RT-qPCR) was further performed to confirm the tissue-specific expression and responses to drought stress treatment of 12 selected Populus CCCH genes.ConclusionsThis study provides the first systematic analysis of the Populus CCCH proteins. Comprehensive genomic analyses suggested that segmental duplications contribute significantly to the expansion of Populus CCCH gene family. Transcriptome profiling provides first insights into the functional divergences among members of Populus CCCH gene family. Particularly, some CCCH genes may be involved in wood development while others in drought tolerance regulation. Our results presented here may provide a starting point for the functional dissection of this family of potential RNA-binding proteins.


Molecular Biology Reports | 2013

Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa)

Ran Zuo; Ruibo Hu; Guohua Chai; Meiling Xu; Guang Qi; Yingzhen Kong; Gongke Zhou

Calcium-dependent protein kinases (CDPKs) are Ca2+-binding proteins known to play crucial roles in Ca2+ signal transduction pathways which have been identified throughout plant kingdom and in certain types of protists. Genome-wide analysis of CDPKs have been carried out in Arabidopsis, rice and wheat, and quite a few of CDPKs were proved to play crucial roles in plant stress responsive signature pathways. In this study, a comprehensive analysis of Populus CDPK and its closely related gene families was performed, including phylogeny, chromosome locations, gene structures, and expression profiles. Thirty Populus CDPK genes and twenty closely related kinase genes were identified, which were phylogenetically clustered into eight distinct subfamilies and predominately distributed across fifteen linkage groups (LG). Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus CDPK gene family. Furthermore, microarray analysis showed that a number of Populus CDPK and its closely related genes differentially expressed across disparate tissues and under various stresses. The expression profiles of paralogous pairs were also investigated to reveal their evolution fates. In addition, quantitative real-time RT-PCR was performed on nine selected CDPK genes to confirm their responses to drought stress treatment. These observations may lay the foundation for future functional analysis of Populus CDPK and its closely related gene families to unravel their biological roles.


Plant Physiology | 2014

CELLULOSE SYNTHASE-LIKE A2, a Glucomannan Synthase, Is Involved in Maintaining Adherent Mucilage Structure in Arabidopsis Seed(1[C][W])

Li Yu; Dachuan Shi; Junling Li; Yingzhen Kong; Yanchong Yu; Guohua Chai; Ruibo Hu; Juan Wang; Michael G. Hahn; Gongke Zhou

Disruption of a glucomannan synthase alters cellulose crystallinity and spatial distribution, yielding thinner adherent mucilage with increased density in seeds of Arabidopsis. Mannans are hemicellulosic polysaccharides that are considered to have both structural and storage functions in the plant cell wall. However, it is not yet known how mannans function in Arabidopsis (Arabidopsis thaliana) seed mucilage. In this study, CELLULOSE SYNTHASE-LIKE A2 (CSLA2; At5g22740) expression was observed in several seed tissues, including the epidermal cells of developing seed coats. Disruption of CSLA2 resulted in thinner adherent mucilage halos, although the total amount of the adherent mucilage did not change compared with the wild type. This suggested that the adherent mucilage in the mutant was more compact compared with that of the wild type. In accordance with the role of CSLA2 in glucomannan synthesis, csla2-1 mucilage contained 30% less mannosyl and glucosyl content than did the wild type. No appreciable changes in the composition, structure, or macromolecular properties were observed for nonmannan polysaccharides in mutant mucilage. Biochemical analysis revealed that cellulose crystallinity was substantially reduced in csla2-1 mucilage; this was supported by the removal of most mucilage cellulose through treatment of csla2-1 seeds with endo-β-glucanase. Mutation in CSLA2 also resulted in altered spatial distribution of cellulose and an absence of birefringent cellulose microfibrils within the adherent mucilage. As with the observed changes in crystalline cellulose, the spatial distribution of pectin was also modified in csla2-1 mucilage. Taken together, our results demonstrate that glucomannans synthesized by CSLA2 are involved in modulating the structure of adherent mucilage, potentially through altering cellulose organization and crystallization.


Plant Cell Reports | 2015

Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis

Xuanwen Yang; Xiaoyu Wang; Lu Ji; Zili Yi; Chunxiang Fu; Jingcheng Ran; Ruibo Hu; Gongke Zhou

Key messageMLNAC5functions as a stress-responsive NAC transcriptionfactor gene and enhances drought and cold stress tolerance in transgenic Arabidopsis via the ABA-dependent signaling pathway.AbstractNAC transcription factors (TFs) play crucial roles in plant responses to abiotic stress. Miscanthus lutarioriparius is one of Miscanthus species native to East Asia. It has attracted much attention as a bioenergy crop because of its superior biomass productivity as well as wide adaptability to different environments. However, the functions of stress-related NAC TFs remain to be elucidated in M. lutarioriparius. In this study, a detailed functional characterization of MlNAC5 was carried out. MlNAC5 was a member of ATAF subfamily and it showed the highest sequence identity to ATAF1. Subcellular localization of MlNAC5-YFP fusion protein in tobacco leaves indicated that MlNAC5 is a nuclear protein. Transactivation assay in yeast cells demonstrated that MlNAC5 functions as a transcription activator and its activation domain is located in the C-terminus. Overexpression of MlNAC5 in Arabidopsis had impacts on plant development including dwarfism, leaf senescence, leaf morphology, and late flowering under normal growth conditions. Furthermore, MlNAC5 overexpression lines in Arabidopsis exhibited hypersensitivity to abscisic acid (ABA) and NaCl. Moreover, overexpression of MlNAC5 in Arabidopsis significantly enhanced drought and cold tolerance by transcriptionally regulating some stress-responsive marker genes. Collectively, our results indicated that MlNAC5 functions as an important regulator during the process of plant development and responses to salinity, drought and cold stresses.

Collaboration


Dive into the Gongke Zhou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruibo Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guang Qi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guohua Chai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Changjiang Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guo He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Li Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yingping Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yubin Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoyu Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge