Gonzalo E. Pizarro
Pontifical Catholic University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gonzalo E. Pizarro.
Water Science and Technology | 1999
Daniel R. Noguera; Gonzalo E. Pizarro; David A. Stahl; Bruce E. Rittmann
A mathematical model to simulate the three-dimensional growth of multispecies anaerobic biofilms is developed and tested with a two-species biofilm composed of sulfate-reducing bacteria and methanogens. The numerical approach is based on the separation of biological, physical, and chemical phenomena so that quasi-steady-state conditions can be used in the solution. Simulations with Desulfovibrio vulgaris and Methanobacterium formicicum result in the formation of a biofilm heterogeneous in structure and composition. The model predicts different biofilm structures in the absence of sulfate, when a syntrophic association between the two organisms develops, and in the presence of sulfate, when the two organisms compete for the available hydrogen.
Journal of Applied Microbiology | 2010
Juan P. Pavissich; Ignacio T. Vargas; Bernardo González; Pablo A. Pastén; Gonzalo E. Pizarro
Aims: This study used culture‐dependent and culture‐independent approaches to characterize bacterial communities in copper plumbing corrosion and to assess biofilm formation and copper resistance of heterotrophic bacteria isolated from copper pipes.
Science of The Total Environment | 2014
Eduardo Leiva; Consuelo d.P. Rámila; Ignacio T. Vargas; Cristian Escauriaza; Carlos A. Bonilla; Gonzalo E. Pizarro; John M. Regan; Pablo A. Pastén
Rivers in northern Chile have arsenic (As) concentrations at levels that are toxic for humans and other organisms. Microorganism-mediated redox reactions have a crucial role in the As cycle; the microbial oxidation of As (As(III) to As(V)) is a critical transformation because it favors the immobilization of As in the solid phase. We studied the role of microbial As oxidation for controlling the mobility of As in the extreme environment found in the Chilean Altiplano (i.e., > 4000 meters above sea level (masl) and < 310 mm annual rainfall), which are conditions that have rarely been studied. Our model system was the upper Azufre River sub-basin, where the natural attenuation of As from hydrothermal discharge (pH 4-6) was observed. As(III) was actively oxidized by a microbial consortium, leading to a significant decrease in the dissolved As concentrations and a corresponding increase in the sediments As concentration downstream of the hydrothermal source. In-situ oxidation experiments demonstrated that the As oxidation required biological activity, and microbiological molecular analysis confirmed the presence of As(III)-oxidizing groups (aroA-like genes) in the system. In addition, the pH measurements and solid phase analysis strongly suggested that the As removal mechanism involved adsorption or coprecipitation with Fe-oxyhydroxides. Taken together, these results indicate that the microorganism-mediated As oxidation contributed to the attenuation of As concentrations and the stabilization of As in the solid phase, therefore controlling the amount of As transported downstream. This study is the first to demonstrate the microbial oxidation of As in Altiplano basins and its relevance in the immobilization of As.
Science of The Total Environment | 2014
Manuel P. Bugueño; Sara E. Acevedo; Carlos A. Bonilla; Gonzalo E. Pizarro; Pablo A. Pastén
Fluvial sediments from two lower Loa River basin sites in northern Chile were compared in order to probe the effects of vegetation and organic matter (OM) on As accumulation in fluvial environments. The two sites were the Sloman dam, which lacks macrophytes and has a low OM content (2.4%) in sediments, and the Quillagua Oasis, which is 23 km downstream from the Sloman site and has a higher OM (6.2%) in sediments and abundant aquatic plant life. The Quillagua site had preferential As enrichment with a co-occurrence pattern that differed from that of the Sloman site, which had a lower As concentration (1528 vs. 262 mg/kg d.w., respectively). At the Quillagua site, As concentration was strongly correlated with Mn and OM (r = 0.91 and 0.85, respectively); while at the Sloman site, As concentration in sediments was significantly correlated with Ca and Sr (r = 0.63 and 0.54, respectively). Sequential extraction analyses showed that the Sloman site had higher percentage of easily exchangeable As within the surface sediment (12%, 45 mg/kg d.w.) compared with the Quillagua site (3%, 40 mg/kg d.w.). These contrasting results suggest that both vegetation and OM control the immobilization and accumulation of As in the arid Loa River basin.
Journal of Hazardous Materials | 2016
Consuelo d.P. Rámila; Samuel Contreras; Camila Di Domenico; Marco A. Molina-Montenegro; Andrea Vega; Michael Handford; Carlos A. Bonilla; Gonzalo E. Pizarro
Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems.
Water Resources Research | 2015
María Teresa Contreras; Daniel Müllendorff; Pablo A. Pastén; Gonzalo E. Pizarro; Chris Paola; Cristian Escauriaza
Rapid changes due to anthropic interventions in high-altitude environments, such as the Altiplano region in South America, require new approaches to understand the connections between physical and geochemical processes. Alterations of the water quality linked to the river morphology can affect the ecosystems and human development in the long term. The future construction of a reservoir in the Lluta River, located in northern Chile, will change the spatial distribution of arsenic-rich sediments, which can have significant effects on the lower parts of the watershed. In this investigation, we develop a coupled numerical model to predict and evaluate the interactions between morphodynamic changes in the Lluta reservoir, and conditions that can potentially desorb arsenic from the sediments. Assuming that contaminants are mobilized under anaerobic conditions, we calculate the oxygen concentration within the sediments to study the interactions of the delta progradation with the potential arsenic release. This work provides a framework for future studies aimed to analyze the complex connections between morphodynamics and water quality, when contaminant-rich sediments accumulate in a reservoir. The tool can also help to design effective risk management and remediation strategies in these extreme environments.
Bioelectrochemistry | 2014
Ignacio T. Vargas; Marco A. Alsina; Juan P. Pavissich; Gustavo A. Jeria; Pablo A. Pastén; Magdalena Walczak; Gonzalo E. Pizarro
Microbially influenced corrosion (MIC) is recognized as an unusual and severe type of corrosion that causes costly failures around the world. A microbial biofilm could enhance the copper release from copper plumbing into the water by forming a reactive interface. The biofilm increases the corrosion rate, the mobility of labile copper from its matrix and the detachment of particles enriched with copper under variable shear stress due to flow conditions. MIC is currently considered as a series of interdependent processes occurring at the metal-liquid interface. The presence of a biofilm results in the following effects: (a) the formation of localized microenvironments with distinct pH, dissolved oxygen concentrations, and redox conditions; (b) sorption and desorption of labile copper bonded to organic compounds under changing water chemistry conditions; (c) change in morphology by deposition of solid corrosion by-products; (d) diffusive transport of reactive chemical species from or towards the metal surface; and (e) detachment of scale particles under flow conditions. Using a multi-technique approach that combines pipe and coupon experiments this paper reviews the effects of microbial biofilms on the corrosion of copper plumbing systems, and proposes an integrated conceptual model for this phenomenon supported by new experimental data.
Bioelectrochemistry | 2014
Gonzalo E. Pizarro; Ignacio T. Vargas; Pablo A. Pastén; Gustavo R. Calle
Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release.
Water Science and Technology | 2014
M. Aybar; Gonzalo E. Pizarro; J. P. Boltz; L. Downing; Robert Nerenberg
We used modeling to predict the energy and cost savings associated with the air-based, hybrid membrane-biofilm reactor (hybrid MfBR). This process is obtained by replacing fine-bubble diffusers in conventional activated sludge with air-supplying, hollow-fiber membrane modules. Evaluated processes included removal of chemical oxygen demand (COD), combined COD and total nitrogen (TN) removal, and hybrid growth (biofilm and suspended). Target concentrations of COD and TN were based on high-stringency water reuse scenarios. Results showed reductions in power requirements as high as 86%. The decrease mainly resulted from the dramatically lower air flows for the MBfR, resulting from its higher oxygen-transfer efficiencies. When the MBfR was used for COD and TN removal, savings up to US
Materials | 2017
Ignacio T. Vargas; Diego Fischer; Marco A. Alsina; Juan P. Pavissich; Pablo A. Pastén; Gonzalo E. Pizarro
200/1,000 m(3) of treated water were predicted. Cost savings were highly sensitive to the costs of the membrane modules and electrical power. The costs were also very sensitive to membrane oxidation flux for ammonia, and the membrane life. These results suggest the hybrid MBfR may provide significant savings in energy and costs. Further research on the identified key parameters can help confirm these modeling predictions and facilitate scale-up.