Gonzalo Herradón
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gonzalo Herradón.
British Journal of Pharmacology | 2014
Gonzalo Herradón; Carmen Pérez-García
Midkine (MK) and pleiotrophin (PTN) are two neurotrophic factors that are highly up‐regulated in different brain regions after the administration of various drugs of abuse and in degenerative areas of the brain. A deficiency in both MK and PTN has been suggested to be an important genetic factor, which confers vulnerability to the development of the neurodegenerative disorders associated with drugs of abuse in humans. In this review, evidence demonstrating that MK and PTN limit the rewarding effects of drugs of abuse and, potentially, prevent drug relapse is compiled. There is also convincing evidence that MK and PTN have neuroprotective effects against the neurotoxicity and development of neurodegenerative disorders induced by drugs of abuse. Exogenous administration of MK and/or PTN into the CNS by means of non‐invasive methods is proposed as a novel therapeutic strategy for addictive and neurodegenerative diseases. Identification of new molecular targets downstream of the MK and PTN signalling pathways or pharmacological modulation of those already known may also provide a more traditional, but probably effective, therapeutic strategy for treating addictive and neurodegenerative disorders.
Neuroscience | 2010
Esther Gramage; L. Rossi; Noelia Granado; Rosario Moratalla; Gonzalo Herradón
Pleiotrophin (PTN) is a neurotrophic factor with important effects in survival and differentiation of dopaminergic neurons that has been suggested to play important roles in drug of abuse-induced neurotoxicity. To test this hypothesis, we have studied the effects of amphetamine (10 mg/kg, four times, every 2 h) on the nigrostriatal pathway of PTN genetically deficient (PTN-/-) mice. We found that amphetamine causes a significantly enhanced loss of dopaminergic terminals in the striatum of PTN-/- mice compared to wild type (WT+/+) mice. In addition, we found a significant decrease ( approximately 20%) of tyrosine hydroxylase (TH)-positive neurons only in the substantia nigra of amphetamine-treated PTN-/- mice, whereas this area of WT+/+ animals remained unaffected after amphetamine treatment. This effect was accompanied by enhanced amphetamine-induced astrocytosis in the substantia nigra of PTN-/- mice. Interestingly, we found a significant decrease in the phosphorylation levels of p42 extracellular-signal regulated kinase (ERK2) in both saline- and amphetamine-treated PTN-/- mice, whereas phosphorylation of p44 ERK (ERK1) was almost abolished in the striatum of PTN-/- mice compared to WT+/+ mice, suggesting that basal deficiencies in the phosphorylation levels of ERK1/2 could underlie the higher vulnerability of PTN-/- mice to amphetamine-induced neurotoxic effects. The data suggest an important role of PTN in the protection of nigrostriatal pathways against amphetamine insult.
Neuroscience Letters | 2007
Elba Alonso; Elisa Garrido; Carmen Díez-Fernández; Carmen Pérez-García; Gonzalo Herradón; Laura Ezquerra; Thomas F. Deuel; Luis F. Alguacil
The alpha(2)-adrenoceptor antagonist yohimbine is known to oppose to several pharmacological effects of opioid drugs, but the consequences and the mechanisms involved remain to be clearly established. In the present study we have checked the effects of yohimbine on morphine-induced alterations of the expression of key proteins (glial fibrillary acidic protein, GFAP) and genes (alpha(2)-adrenoceptors) in rat brain areas known to be relevant in opioid dependence, addiction and individual vulnerability to drug abuse. Rats were treated with morphine in the presence or absence of yohimbine. The effects of the treatments on GFAP expression were studied by immunohistochemical staining in Locus Coeruleus (LC) and Nucleus of the Solitary Tract (NST), two important noradrenergic nuclei. In addition, drug effects on alpha(2)-adrenoceptor gene expression were determined by real time RT-PCR in the hippocampus, a brain area that receives noradrenergic input from the brainstem. Morphine administration increased GFAP expression both in LC and NST as it was previously reported in other brain areas. Yohimbine was found to efficiently prevent morphine-induced GFAP upregulation. Chronic (but not acute) morphine downregulated mRNA levels of alpha(2A)- and alpha(2C)-adrenoceptors in the hippocampus, while simultaneously increased the expression of the alpha(2B)-adrenoceptor gene. Again, yohimbine was able to prevent morphine-induced changes in the levels of expression of the three alpha(2)-adrenoceptor genes. These results correlate the well-established reduction of opioid dependence and addiction by yohimbine and suggest that this drug could interfere with the neural plasticity induced by chronic morphine in central noradrenergic pathways.
Addiction Biology | 2010
Esther Gramage; Alessia Putelli; María José Polanco; Carmen González-Martín; Laura Ezquerra; Luis F. Alguacil; Pablo Perez-Pinera; Thomas F. Deuel; Gonzalo Herradón
Pleiotrophin (PTN), a neurotrophic factor with important roles in survival and differentiation of dopaminergic neurons, is up‐regulated in the nucleus accumbens after amphetamine administration suggesting that PTN could modulate amphetamine‐induced pharmacological or neuroadaptative effects. To test this hypothesis, we have studied the effects of amphetamine administration in PTN genetically deficient (PTN −/−) and wild type (WT, +/+) mice. In conditioning studies, we found that amphetamine induces conditioned place preference in both PTN −/− and WT (+/+) mice. When these mice were re‐evaluated after a 5‐day period without amphetamine administration, we found that WT (+/+) mice did not exhibit amphetamine‐seeking behaviour, whereas, PTN −/− mice still showed a robust drug‐seeking behaviour. In immunohystochemistry studies, we found that amphetamine (10 mg/kg, four times, every 2 hours) causes a significant increase of glial fibrillary acidic protein positive cells in the striatum of amphetamine‐treated PTN −/− mice compared with WT mice 4 days after last administration of the drug, suggesting an enhanced amphetamine‐induced astrocytosis in the absence of endogenous PTN. Interestingly, we found in concomitant in vitro studies that PTN (3 µM) limits amphetamine (1 mM)‐induced loss of viability of PC12 cell cultures, effect that could be related to the ability of PTN to induce the phosphorylation of Akt and ERK1/2. To test this possibility, we used specific Akt and ERK1/2 inhibitors uncovering for the first time that PTN‐induced protective effects against amphetamine‐induced toxicity in PC12 cells are mediated by the ERK1/2 signalling pathway. The data suggest an important role of PTN to limit amphetamine‐induced neurotoxic and rewarding effects.
Neuroscience Letters | 2008
Gonzalo Herradón; Laura Ezquerra; Trang Nguyen; Chi Wang; Ana Siso; Barbara Franklin; Laura Dilorenzo; Julie Rossenfeld; Inmaculada Silos-Santiago; Luis F. Alguacil
The Fischer 344 (F344) rat strain differs from the Lewis strain in the response to neuropathic pain. Recently, we found that F344 rats totally recover from mechanical allodynia induced by chronic constriction injury (CCI) of the sciatic nerve 28 days after surgery whereas Lewis rats are initiating their recovery at this time point. Thus, the use of this neuropathic pain model in these different rat strains constitutes a good strategy to identify possible target genes involved in the development of neuropathic pain. Since differences between Lewis and F344 rats in their response to pain stimuli in acute pain models have been related to differences in the endogenous opioid and noradrenergic systems, we aimed to determine the levels of expression of key genes of both systems in the spinal cord and dorsal root ganglia (DRG) of both strains 28 days after CCI surgery. Real time RT-PCR revealed minimal changes in gene expression in the spinal cord after CCI despite the strain considered, but marked changes in DRG were observed. A significant upregulation of prodynorphin gene expression occurred only in injured DRG of F344 rats, the most resistant strain to neuropathic pain. In addition, we found a significant downregulation of tyrosine hydroxylase and proenkephalin gene expression levels in both strains whereas delta-opioid receptor was found to be significantly downregulated only in injured DRG of Lewis rats although the same trend was observed in F344 rats. The data strongly suggest that dynorphins could be involved in strain differences concerning CCI resistance.
Current Pharmaceutical Design | 2011
Esther Gramage; Gonzalo Herradón
Parkinson´s disease (PD) is generally a sporadic disease, and only a small proportion of cases have a clear genetic component. During the last few years, a possible specific cause triggering death of dopaminergic neurons in the substantia nigra, drug of abuse-induced neurotoxicity, is being considered as a potential mechanism to develop PD, especially in the case of abuse of amphetamine and its derivatives. Recent evidences have shown pleiotrophin, a growth factor with important functions in remodeling and repair of injured neural tissue, as an important factor involved in the pathogenesis of both diseases by preventing neurodegeneration in Parkinsons disease, neurotoxicity induced by drug abuse and by its ability to modulate drugs addictive effects. This review discusses targeting growth factors such as glial-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) to treat Parkinsons disease and/or drug addiction and compiles recent evidences to propose the pleiotrophin/receptor protein tyrosine phosphatase β/ζ signaling pathway as a new therapeutic target to treat Parkinsons disease and to prevent drug of abuse-induced neurotoxicity and addictive effects.
Growth Factors Journal | 2008
Laura Ezquerra; Luis F. Alguacil; Trang Nguyen; Thomas F. Deuel; Inmaculada Silos-Santiago; Gonzalo Herradón
Pleiotrophin (PTN) and midkine (MK) are two growth factors highly redundant in function that exhibit neurotrophic actions and are upregulated at sites of nerve injury, both properties being compatible with a potential involvement in the pathophysiological events that follow nerve damage (i.e. neuropathic pain). We have tested this hypothesis by comparatively studying PTN and MK gene expression in the spinal cord and dorsal root ganglia (DRG) of three rat strains known to differ in their behavioural responses to chronic constriction injury (CCI) of the sciatic nerve: Lewis, Fischer 344 (F344) and Sprague–Dawley (SD). Real time RT-PCR revealed minimal changes in PTN/MK gene expression in the spinal cord after CCI despite the strain considered, but marked changes were detected in DRG. A significant upregulation of PTN gene expression occurred in injured DRG of the F344 strain, the only strain that recovers from CCI-induced mechanical allodynia 28 days after surgery. In contrast, PTN was found to be downregulated in injured DRG of SD rats, the most sensitive strain in behavioural studies. These changes in PTN were not paralleled by concomitant modifications of MK gene expression. The results demonstrate previously unidentified differences between PTN and MK patterns of expression. Furthermore, the data suggest that upregulation of PTN, but not MK, could play an important role in the recovery from CCI.
Neuroscience | 2011
Esther Gramage; Yasmina B. Martín; P. Ramanah; Carmen Pérez-García; Gonzalo Herradón
Midkine (MK), a neurotrophic factor with important roles in survival and differentiation of dopaminergic neurons, is upregulated in different brain areas after administration of different drugs of abuse suggesting MK could modulate drugs of abuse-induced pharmacological or neuroadaptative effects. To test this hypothesis, we have studied the effects of amphetamine administration in MK genetically deficient (MK-/-) and wild-type (MK+/+) mice. In conditioning studies, we found that amphetamine induces conditioned place preference (CPP) similarly in both MK-/- and MK+/+ mice. In immunohistochemistry studies, we found that amphetamine (10 mg/kg, four times, every 2 h) causes a similar striatal dopaminergic denervation in both MK-/- and MK+/+ mice. However, we detected a significant increase of glial fibrillary acidic protein (GFAP)-positive cells in the striatum of amphetamine-treated MK-/- mice compared to MK+/+ mice, suggesting an enhanced amphetamine-induced astrocytosis in absence of endogenous MK. Interestingly, the levels of expression of the MK receptor, receptor protein tyrosine phosphatase (RPTP) β/ζ, in the striatum were not found to be changed by the drug administration or the mouse genotype. In a similar manner the phosphorylation levels of RPTP β/ζ substrates with important roles in survival of dopaminergic neurons, Fyn kinase and TrkA, and of the MAP kinases ERK1/2, were unaffected by the drug or the genotype. The data clearly suggest that endogenous MK limits amphetamine-induced astrocytosis through Fyn-, TrkA- and ERK1/2-independent mechanisms and identify previously unexpected functional differences between MK and pleiotrophin, the only other member of the MK family of growth factors, in the modulation of effects of drugs of abuse.
Mini-reviews in Medicinal Chemistry | 2009
Gonzalo Herradón; Laura Ezquerra; Esther Gramage; Luis F. Alguacil
This review compiles the scientific basis to propose the pleiotrophin/receptor protein tyrosine phosphatase β/ζ signaling pathway as a new therapeutic target to prevent drug of abuse-induced toxicity. In addition, potential guidelines are provided for the development of new therapeutic compounds derived from that knowledge. This approach may be relevant since efficient therapeutic strategies are currently lacking in this field, even when drug-induced neurotoxicity seems to underlie the neurodegenerative disorders diagnosed in drug addicts.
European Journal of Pharmacology | 2008
Esther Gramage; Luis F. Alguacil; Gonzalo Herradón
Pleiotrophin is a cytokine involved in differentiation, survival and repair processes in the central nervous system. Pleiotrophin is upregulated in the brain after administration of different drugs of abuse, thus suggesting a protective role of this cytokine on drug-induced toxicity. We have tested this hypothesis in vitro using NG108-15 cells, a line widely used for neurotoxicity studies. It was found that pleiotrophin (3 and 6 microM) significantly prevents cocaine (5 mM)-induced cytotoxicity as measured by the neutral red test. Similar results were obtained in PC12 cells, which were found to endogenously express both pleiotrophin and its main target, receptor protein tyrosine phosphatase (RPTP) beta/zeta. Blockade of pleiotrophin signaling using anti-pleiotrophin antibodies (2 microg/ml) did not potentiate cocaine-induced toxicity; interestingly, incubation of PC12 cells only with anti-pleiotrophin antibodies significantly reduced cellular viability, thus suggesting an important role of endogenous pleiotrophin signaling in cell survival. The data suggest that pleiotrophin overexpression in response to drugs of abuse may be relevant to prevent drug-induced toxicity.