Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gonzalo M. Rivera is active.

Publication


Featured researches published by Gonzalo M. Rivera.


Biochemical Journal | 2012

n-3 polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-dependent actin remodelling during CD4+ T-cell activation.

Tim Y. Hou; Jennifer M. Monk; Yang-Yi Fan; Rola Barhoumi; Yong Q. Chen; Gonzalo M. Rivera; David N. McMurray; Robert S. Chapkin

n-3 PUFA (polyunsaturated fatty acids), i.e. DHA (docosahexaenoic acid), found in fish oil, exhibit anti-inflammatory properties; however, the molecular mechanisms remain unclear. Since PtdIns(4,5)P2 resides in raft domains and DHA can alter the size of rafts, we hypothesized that PtdIns(4,5)P2 and downstream actin remodelling are perturbed by the incorporation of n-3 PUFA into membranes, resulting in suppressed T-cell activation. CD4+ T-cells isolated from Fat-1 transgenic mice (membranes enriched in n-3 PUFA) exhibited a 50% decrease in PtdIns(4,5)P2. Upon activation by plate-bound anti-CD3/anti-CD28 or PMA/ionomycin, Fat-1 CD4+ T-cells failed to metabolize PtdIns(4,5)P2. Furthermore, actin remodelling failed to initiate in Fat-1 CD4+ T-cells upon stimulation; however, the defect was reversed by incubation with exogenous PtdIns(4,5)P2. When Fat-1 CD4+ T-cells were stimulated with anti-CD3/anti-CD28-coated beads, WASP (Wiskott-Aldrich syndrome protein) failed to translocate to the immunological synapse. The suppressive phenotype, consisting of defects in PtdIns(4,5)P2 metabolism and actin remodelling, were recapitulated in CD4+ T-cells isolated from mice fed on a 4% DHA triacylglycerol-enriched diet. Collectively, these data demonstrate that n-3 PUFA, such as DHA, alter PtdIns(4,5)P2 in CD4+ T-cells, thereby suppressing the recruitment of WASP to the immunological synapse, and impairing actin remodelling in CD4+ T-cells.


Development | 2015

Neuropilin 1 balances β8 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain.

Shinya Hirota; Thomas P. Clements; Leung K. Tang; John E. Morales; Hye Shin Lee; S. Paul Oh; Gonzalo M. Rivera; Daniel S. Wagner; Joseph H. McCarty

Angiogenesis in the developing central nervous system (CNS) is regulated by neuroepithelial cells, although the genes and pathways that couple these cells to blood vessels remain largely uncharacterized. Here, we have used biochemical, cell biological and molecular genetic approaches to demonstrate that β8 integrin (Itgb8) and neuropilin 1 (Nrp1) cooperatively promote CNS angiogenesis by mediating adhesion and signaling events between neuroepithelial cells and vascular endothelial cells. β8 integrin in the neuroepithelium promotes the activation of extracellular matrix (ECM)-bound latent transforming growth factor β (TGFβ) ligands and stimulates TGFβ receptor signaling in endothelial cells. Nrp1 in endothelial cells suppresses TGFβ activation and signaling by forming intercellular protein complexes with β8 integrin. Cell type-specific ablation of β8 integrin, Nrp1, or canonical TGFβ receptors results in pathological angiogenesis caused by defective neuroepithelial cell-endothelial cell adhesion and imbalances in canonical TGFβ signaling. Collectively, these data identify a paracrine signaling pathway that links the neuroepithelium to blood vessels and precisely balances TGFβ signaling during cerebral angiogenesis. Summary: Neuropilin 1 and β8 integrin cooperatively promote cerebral angiogenesis by mediating adhesion and signaling events between neuroepithelial cells and vascular endothelial cells in the mouse brain.


Molecular and Cellular Biology | 2015

Protein tyrosine phosphatase-PEST and β8 integrin regulate spatiotemporal patterns of RhoGDI1 activation in migrating cells.

Hye Shin Lee; Mujeeburahiman Cheerathodi; Sankar P. Chaki; Steve B. Reyes; Yanhua Zheng; Zhimin Lu; Helena Paidassi; Céline DerMardirossian; Adam Lacy-Hulbert; Gonzalo M. Rivera; Joseph H. McCarty

ABSTRACT Directional cell motility is essential for normal development and physiology, although how motile cells spatiotemporally activate signaling events remains largely unknown. Here, we have characterized an adhesion and signaling unit comprised of protein tyrosine phosphatase (PTP)-PEST and the extracellular matrix (ECM) adhesion receptor β8 integrin that plays essential roles in directional cell motility. β8 integrin and PTP-PEST form protein complexes at the leading edge of migrating cells and balance patterns of Rac1 and Cdc42 signaling by controlling the subcellular localization and phosphorylation status of Rho GDP dissociation inhibitor 1 (RhoGDI1). Translocation of Src-phosphorylated RhoGDI1 to the cells leading edge promotes local activation of Rac1 and Cdc42, whereas dephosphorylation of RhoGDI1 by integrin-bound PTP-PEST promotes RhoGDI1 release from the membrane and sequestration of inactive Rac1/Cdc42 in the cytoplasm. Collectively, these data reveal a finely tuned regulatory mechanism for controlling signaling events at the leading edge of directionally migrating cells.


Journal of Cell Science | 2013

Nck enables directional cell migration through the coordination of polarized membrane protrusion with adhesion dynamics.

Sankar P. Chaki; Rola Barhoumi; Matthew E. Berginski; Harini Sreenivasappa; Andreea Trache; Shawn M. Gomez; Gonzalo M. Rivera

Summary Directional migration requires the coordination of cytoskeletal changes essential for cell polarization and adhesion turnover. Extracellular signals that alter tyrosine phosphorylation drive directional migration by inducing reorganization of the actin cytoskeleton. It is recognized that Nck is an important link between tyrosine phosphorylation and actin dynamics; however, the role of Nck in cytoskeletal remodeling during directional migration and the underlying molecular mechanisms remain largely undetermined. In this study, a combination of molecular genetics and quantitative live cell microscopy was used to show that Nck is essential in the establishment of front–back polarity and directional migration of endothelial cells. Time-lapse differential interference contrast and total internal reflection fluorescence microscopy showed that Nck couples the formation of polarized membrane protrusions with their stabilization through the assembly and maturation of cell–substratum adhesions. Measurements by atomic force microscopy showed that Nck also modulates integrin &agr;5&bgr;1-fibronectin adhesion force and cell stiffness. Fluorescence resonance energy transfer imaging revealed that Nck depletion results in delocalized and increased activity of Cdc42 and Rac. By contrast, the activity of RhoA and myosin II phosphorylation were reduced by Nck knockdown. Thus, this study identifies Nck as a key coordinator of cytoskeletal changes that enable cell polarization and directional migration, which are crucial processes in development and disease.


Molecular Cancer Research | 2016

The Cytoskeletal Adapter Protein Spinophilin Regulates Invadopodia Dynamics and Tumor Cell Invasion in Glioblastoma

Mujeeburahiman Cheerathodi; Naze G. Avci; Paola A. Guerrero; Leung K. Tang; Julia Popp; John E. Morales; Zhihua Chen; Amancio Carnero; Frederick F. Lang; Bryan A. Ballif; Gonzalo M. Rivera; Joseph H. McCarty

Glioblastoma is a primary brain cancer that is resistant to all treatment modalities. This resistance is due, in large part, to invasive cancer cells that disperse from the main tumor site, escape surgical resection, and contribute to recurrent secondary lesions. The adhesion and signaling mechanisms that drive glioblastoma cell invasion remain enigmatic, and as a result there are no effective anti-invasive clinical therapies. Here we have characterized a novel adhesion and signaling pathway comprised of the integrin αvβ8 and its intracellular binding partner, Spinophilin (Spn), which regulates glioblastoma cell invasion in the brain microenvironment. We show for the first time that Spn binds directly to the cytoplasmic domain of β8 integrin in glioblastoma cells. Genetically targeting Spn leads to enhanced invasive cell growth in preclinical models of glioblastoma. Spn regulates glioblastoma cell invasion by modulating the formation and dissolution of invadopodia. Spn-regulated invadopodia dynamics are dependent, in part, on proper spatiotemporal activation of the Rac1 GTPase. Glioblastoma cells that lack Spn showed diminished Rac1 activities, increased numbers of invadopodia, and enhanced extracellular matrix degradation. Collectively, these data identify Spn as a critical adhesion and signaling protein that is essential for modulating glioblastoma cell invasion in the brain microenvironment. Implications: Tumor cell invasion is a major clinical obstacle in glioblastoma and this study identifies a new signaling pathway regulated by Spinophilin in invasive glioblastoma. Mol Cancer Res; 14(12); 1277–87. ©2016 AACR.


BioArchitecture | 2013

Integration of signaling and cytoskeletal remodeling by Nck in directional cell migration

Sankar P. Chaki; Gonzalo M. Rivera

Planar and apical-basal cellular polarization of epithelia and endothelia are crucial during morphogenesis. The establishment of these distinct polarity states and their transitions are regulated by signaling networks that include polarity complexes, Rho GTPases, and phosphoinositides. The spatiotemporal coordination of signaling by these molecules modulates cytoskeletal remodeling and vesicle trafficking to specify membrane domains, a prerequisite for the organization of tissues and organs. Here we present an overview of how activation of the WASp/Arp2/3 pathway of actin remodeling by Nck coordinates directional cell migration and speculate on its role as a signaling integrator in the coordination of cellular processes involved in endothelial cell polarity and vascular lumen formation.


Biochimica et Biophysica Acta | 2016

n-3 polyunsaturated fatty acids suppress CD4(+) T cell proliferation by altering phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] organization.

Tim Y. Hou; Rola Barhoumi; Yang-Yi Fan; Gonzalo M. Rivera; Rami N. Hannoush; David N. McMurray; Robert S. Chapkin

The mechanisms by which n-3 polyunsaturated fatty acids (n-3 PUFA), abundant in fish oil, exert their anti-inflammatory effects have not been rigorously defined. We have previously demonstrated that n-3 PUFA decrease the amount of phosphatidylinositol-(4,5)-bisphosphate, [PI(4,5)P2], in CD4(+) T cells, leading to suppressed actin remodeling upon activation. Since discrete pools of PI(4,5)P2 exist in the plasma membrane, we determined whether n-3 PUFA modulate spatial organization of PI(4,5)P2 relative to raft and non-raft domains. We used Förster resonance energy transfer (FRET) to demonstrate that lipid raft mesodomains in the plasma membrane of CD4(+) T cells enriched in n-3 PUFA display increased co-clustering of Lck(N10) and LAT(ΔCP), markers of lipid rafts. CD4(+) T cells enriched in n-3 PUFA also exhibited a depleted plasma membrane non-raft PI(4,5)P2 pool as detected by decreased co-clustering of Src(N15), a non-raft marker, and PH(PLC-δ), a PI(4,5)P2 reporter. Incubation with exogenous PI(4,5)P2 rescued the effects on the non-raft PI(4,5)P2 pool, and reversed the suppression of T cell proliferation in CD4(+) T cells enriched with n-3 PUFA. Furthermore, CD4(+) T cells isolated from mice fed a 4% docosahexaenoic acid (DHA)-enriched diet exhibited a decrease in the non-raft pool of PI(4,5)P2, and exogenous PI(4,5)P2 reversed the suppression of T cell proliferation. Finally, these effects were not due to changes to post-translational lipidation, since n-3 PUFA did not alter the palmitoylation status of signaling proteins. These data demonstrate that n-3 PUFA suppress T cell proliferation by altering plasma membrane topography and the spatial organization of PI(4,5)P2.


Molecular Biology of the Cell | 2017

Nck deficiency is associated with delayed breast carcinoma progression and reduced metastasis

David C. Morris; Julia Popp; Leung K. Tang; Holly C. Gibbs; Emily E. Schmitt; Sankar P. Chaki; Briana C. Bywaters; Alvin T. Yeh; Weston Porter; Robert C. Burghardt; Rola Barhoumi; Gonzalo M. Rivera

Nck promotes breast carcinoma progression and metastasis by directing the polarized interaction of carcinoma cells with collagen fibrils, decreasing actin turnover, and enhancing the localization and activity of MMP14 at the cell surface through modulation of the spatiotemporal activation of Cdc42 and RhoA.


Molecular Biology of the Cell | 2015

Actin remodeling by Nck regulates endothelial lumen formation

Sankar P. Chaki; Rola Barhoumi; Gonzalo M. Rivera

Nck-dependent actin remodeling enables endothelial morphogenesis by promoting cell elongation and proper organization of VE-cadherin intercellular junctions. Nck determines spatiotemporal patterns of Cdc42/aPKC activation to regulate endothelial apical-basal polarity and lumen formation.


Integrative Biology | 2014

Selective regulation of cytoskeletal tension and cell-matrix adhesion by RhoA and Src.

Harini Sreenivasappa; Sankar P. Chaki; Soon-Mi Lim; Jerome P. Trzeciakowski; Michael W. Davidson; Gonzalo M. Rivera; Andreea Trache

Collaboration


Dive into the Gonzalo M. Rivera's collaboration.

Researchain Logo
Decentralizing Knowledge