Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gonzalo Mateos is active.

Publication


Featured researches published by Gonzalo Mateos.


IEEE Transactions on Signal Processing | 2009

Distributed LMS for Consensus-Based In-Network Adaptive Processing

Ioannis D. Schizas; Gonzalo Mateos; Georgios B. Giannakis

Adaptive algorithms based on in-network processing of distributed observations are well-motivated for online parameter estimation and tracking of (non)stationary signals using ad hoc wireless sensor networks (WSNs). To this end, a fully distributed least mean-square (D-LMS) algorithm is developed in this paper, offering simplicity and flexibility while solely requiring single-hop communications among sensors. The resultant estimator minimizes a pertinent squared-error cost by resorting to i) the alternating-direction method of multipliers so as to gain the desired degree of parallelization and ii) a stochastic approximation iteration to cope with the time-varying statistics of the process under consideration. Information is efficiently percolated across the WSN using a subset of ldquobridgerdquo sensors, which further tradeoff communication cost for robustness to sensor failures. For a linear data model and under mild assumptions aligned with those considered in the centralized LMS, stability of the novel D-LMS algorithm is established to guarantee that local sensor estimation error norms remain bounded most of the time. Interestingly, this weak stochastic stability result extends to the pragmatic setup where intersensor communications are corrupted by additive noise. In the absence of observation and communication noise, consensus is achieved almost surely as local estimates are shown exponentially convergent to the parameter of interest with probability one. Mean-square error performance of D-LMS is also assessed. Numerical simulations: i) illustrate that D-LMS outperforms existing alternatives that rely either on information diffusion among neighboring sensors, or, local sensor filtering; ii) highlight its tracking capabilities; and iii) corroborate the stability and performance analysis results.


IEEE Transactions on Signal Processing | 2010

Distributed Sparse Linear Regression

Gonzalo Mateos; Juan Andrés Bazerque; Georgios B. Giannakis

The Lasso is a popular technique for joint estimation and continuous variable selection, especially well-suited for sparse and possibly under-determined linear regression problems. This paper develops algorithms to estimate the regression coefficients via Lasso when the training data are distributed across different agents, and their communication to a central processing unit is prohibited for e.g., communication cost or privacy reasons. A motivating application is explored in the context of wireless communications, whereby sensing cognitive radios collaborate to estimate the radio-frequency power spectrum density. Attaining different tradeoffs between complexity and convergence speed, three novel algorithms are obtained after reformulating the Lasso into a separable form, which is iteratively minimized using the alternating-direction method of multipliers so as to gain the desired degree of parallelization. Interestingly, the per agent estimate updates are given by simple soft-thresholding operations, and inter-agent communication overhead remains at affordable level. Without exchanging elements from the different training sets, the local estimates consent to the global Lasso solution, i.e., the fit that would be obtained if the entire data set were centrally available. Numerical experiments with both simulated and real data demonstrate the merits of the proposed distributed schemes, corroborating their convergence and global optimality. The ideas in this paper can be easily extended for the purpose of fitting related models in a distributed fashion, including the adaptive Lasso, elastic net, fused Lasso and nonnegative garrote.


ieee international conference on services computing | 2015

Health Monitoring and Management Using Internet-of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and Challenges

Moeen Hassanalieragh; Alex Page; Tolga Soyata; Gaurav Sharma; Mehmet K. Aktas; Gonzalo Mateos; Burak Kantarci; Silvana Andreescu

Among the panoply of applications enabled by the Internet of Things (IoT), smart and connected health care is a particularly important one. Networked sensors, either worn on the body or embedded in our living environments, make possible the gathering of rich information indicative of our physical and mental health. Captured on a continual basis, aggregated, and effectively mined, such information can bring about a positive transformative change in the health care landscape. In particular, the availability of data at hitherto unimagined scales and temporal longitudes coupled with a new generation of intelligent processing algorithms can: (a) facilitate an evolution in the practice of medicine, from the current post facto diagnose-and-treat reactive paradigm, to a proactive framework for prognosis of diseases at an incipient stage, coupled with prevention, cure, and overall management of health instead of disease, (b) enable personalization of treatment and management options targeted particularly to the specific circumstances and needs of the individual, and (c) help reduce the cost of health care while simultaneously improving outcomes. In this paper, we highlight the opportunities and challenges for IoT in realizing this vision of the future of health care.


IEEE Signal Processing Magazine | 2014

Modeling and Optimization for Big Data Analytics: (Statistical) learning tools for our era of data deluge

Konstantinos Slavakis; Georgios B. Giannakis; Gonzalo Mateos

With pervasive sensors continuously collecting and storing massive amounts of information, there is no doubt this is an era of data deluge. Learning from these large volumes of data is expected to bring significant science and engineering advances along with improvements in quality of life. However, with such a big blessing come big challenges. Running analytics on voluminous data sets by central processors and storage units seems infeasible, and with the advent of streaming data sources, learning must often be performed in real time, typically without a chance to revisit past entries. Workhorse signal processing (SP) and statistical learning tools have to be re-examined in todays high-dimensional data regimes. This article contributes to the ongoing cross-disciplinary efforts in data science by putting forth encompassing models capturing a wide range of SP-relevant data analytic tasks, such as principal component analysis (PCA), dictionary learning (DL), compressive sampling (CS), and subspace clustering. It offers scalable architectures and optimization algorithms for decentralized and online learning problems, while revealing fundamental insights into the various analytic and implementation tradeoffs involved. Extensions of the encompassing models to timely data-sketching, tensor- and kernel-based learning tasks are also provided. Finally, the close connections of the presented framework with several big data tasks, such as network visualization, decentralized and dynamic estimation, prediction, and imputation of network link load traffic, as well as imputation in tensor-based medical imaging are highlighted.


IEEE Transactions on Signal Processing | 2009

Distributed Recursive Least-Squares for Consensus-Based In-Network Adaptive Estimation

Gonzalo Mateos; Ioannis D. Schizas; Georgios B. Giannakis

Recursive least-squares (RLS) schemes are of paramount importance for reducing complexity and memory requirements in estimating stationary signals as well as for tracking nonstationary processes, especially when the state and/or data model are not available and fast convergence rates are at a premium. To this end, a fully distributed (D-) RLS algorithm is developed for use by wireless sensor networks (WSNs) whereby sensors exchange messages with one-hop neighbors to consent on the network-wide estimates adaptively. The WSNs considered here do not necessarily possess a Hamiltonian cycle, while the inter-sensor links are challenged by communication noise. The novel algorithm is obtained after judiciously reformulating the exponentially-weighted least-squares cost into a separable form, which is then optimized via the alternating-direction method of multipliers. If powerful error control codes are utilized and communication noise is not an issue, D-RLS is modified to reduce communication overhead when compared to existing noise-unaware alternatives. Numerical simulations demonstrate that D-RLS can outperform existing approaches in terms of estimation performance and noise resilience, while it has the potential of performing efficient tracking.


IEEE Transactions on Signal Processing | 2015

Subspace Learning and Imputation for Streaming Big Data Matrices and Tensors

Morteza Mardani; Gonzalo Mateos; Georgios B. Giannakis

Extracting latent low-dimensional structure from high-dimensional data is of paramount importance in timely inference tasks encountered with “Big Data” analytics. However, increasingly noisy, heterogeneous, and incomplete datasets, as well as the need for real-time processing of streaming data, pose major challenges to this end. In this context, the present paper permeates benefits from rank minimization to scalable imputation of missing data, via tracking low-dimensional subspaces and unraveling latent (possibly multi-way) structure from incomplete streaming data. For low-rank matrix data, a subspace estimator is proposed based on an exponentially weighted least-squares criterion regularized with the nuclear norm. After recasting the nonseparable nuclear norm into a form amenable to online optimization, real-time algorithms with complementary strengths are developed, and their convergence is established under simplifying technical assumptions. In a stationary setting, the asymptotic estimates obtained offer the well-documented performance guarantees of the batch nuclear-norm regularized estimator. Under the same unifying framework, a novel online (adaptive) algorithm is developed to obtain multi-way decompositions of low-rank tensors with missing entries and perform imputation as a byproduct. Simulated tests with both synthetic as well as real Internet and cardiac magnetic resonance imagery (MRI) data confirm the efficacy of the proposed algorithms, and their superior performance relative to state-of-the-art alternatives.


IEEE Transactions on Signal Processing | 2011

Group-Lasso on Splines for Spectrum Cartography

Juan Andrés Bazerque; Gonzalo Mateos; Georgios B. Giannakis

The unceasing demand for continuous situational awareness calls for innovative and large-scale signal processing algorithms, complemented by collaborative and adaptive sensing platforms to accomplish the objectives of layered sensing and control. Towards this goal, the present paper develops a spline-based approach to field estimation, which relies on a basis expansion model of the field of interest. The model entails known bases, weighted by generic functions estimated from the fields noisy samples. A novel field estimator is developed based on a regularized variational least-squares (LS) criterion that yields finite-dimensional (function) estimates spanned by thin-plate splines. Robustness considerations motivate well the adoption of an overcomplete set of (possibly overlapping) basis functions, while a sparsifying regularizer augmenting the LS cost endows the estimator with the ability to select a few of these bases that “better” explain the data. This parsimonious field representation becomes possible, because the sparsity-aware spline-based method of this paper induces a group-Lasso estimator for the coefficients of the thin-plate spline expansions per basis. A distributed algorithm is also developed to obtain the group-Lasso estimator using a network of wireless sensors, or, using multiple processors to balance the load of a single computational unit. The novel spline-based approach is motivated by a spectrum cartography application, in which a set of sensing cognitive radios collaborate to estimate the distribution of RF power in space and frequency. Computer simulations and tests on real data corroborate that the estimated power spectrum density atlas yields the desired RF state awareness, since the maps reveal spatial locations where idle frequency bands can be reused for transmission, even when fading and shadowing effects are pronounced.


IEEE Transactions on Signal Processing | 2012

Robust PCA as Bilinear Decomposition With Outlier-Sparsity Regularization

Gonzalo Mateos; Georgios B. Giannakis

Principal component analysis (PCA) is widely used for dimensionality reduction, with well-documented merits in various applications involving high-dimensional data, including computer vision, preference measurement, and bioinformatics. In this context, the fresh look advocated here permeates benefits from variable selection and compressive sampling, to robustify PCA against outliers. A least-trimmed squares estimator of a low-rank bilinear factor analysis model is shown closely related to that obtained from an ℓ0-(pseudo)norm-regularized criterion encouraging sparsity in a matrix explicitly modeling the outliers. This connection suggests robust PCA schemes based on convex relaxation, which lead naturally to a family of robust estimators encompassing Hubers optimal M-class as a special case. Outliers are identified by tuning a regularization parameter, which amounts to controlling sparsity of the outlier matrix along the whole robustification path of (group) least-absolute shrinkage and selection operator (Lasso) solutions. Beyond its ties to robust statistics, the developed outlier-aware PCA framework is versatile to accommodate novel and scalable algorithms to: i) track the low-rank signal subspace robustly, as new data are acquired in real time; and ii) determine principal components robustly in (possibly) infinite-dimensional feature spaces. Synthetic and real data tests corroborate the effectiveness of the proposed robust PCA schemes, when used to identify aberrant responses in personality assessment surveys, as well as unveil communities in social networks, and intruders from video surveillance data.


EURASIP Journal on Advances in Signal Processing | 2009

Performance analysis of the consensus-based distributed LMS algorithm

Gonzalo Mateos; Ioannis D. Schizas; Georgios B. Giannakis

Low-cost estimation of stationary signals and reduced-complexity tracking of nonstationary processes are well motivated tasks than can be accomplished using ad hoc wireless sensor networks (WSNs). To this end, a fully distributed least mean-square (D-LMS) algorithm is developed in this paper, in which sensors exchange messages with single-hop neighbors to consent on the network-wide estimates adaptively. The novel approach does not require a Hamiltonian cycle or a special bridge subset of sensors, while communications among sensors are allowed to be noisy. A mean-square error (MSE) performance analysis of D-LMS is conducted in the presence of a time-varying parameter vector, which adheres to a first-order autoregressive model. For sensor observations that are related to the parameter vector of interest via a linear Gaussian model and after adopting simplifying independence assumptions, exact closed-form expressions are derived for the global and sensor-level MSE evolution as well as its steady-state (s.s.) values. Mean and MSE-sense stability of D-LMS are also established. Interestingly, extensive numerical tests demonstrate that for small step-sizes the results accurately extend to the pragmatic setting whereby sensors acquire temporally correlated, not necessarily Gaussian data.


IEEE Transactions on Information Theory | 2013

Recovery of Low-Rank Plus Compressed Sparse Matrices With Application to Unveiling Traffic Anomalies

Morteza Mardani; Gonzalo Mateos; Georgios B. Giannakis

Given the noiseless superposition of a low-rank matrix plus the product of a known fat compression matrix times a sparse matrix, the goal of this paper is to establish deterministic conditions under which exact recovery of the low-rank and sparse components becomes possible. This fundamental identifiability issue arises with traffic anomaly detection in backbone networks, and subsumes compressed sensing as well as the timely low-rank plus sparse matrix recovery tasks encountered in matrix decomposition problems. Leveraging the ability of l1 and nuclear norms to recover sparse and low-rank matrices, a convex program is formulated to estimate the unknowns. Analysis and simulations confirm that the said convex program can recover the unknowns for sufficiently low-rank and sparse enough components, along with a compression matrix possessing an isometry property when restricted to operate on sparse vectors. When the low-rank, sparse, and compression matrices are drawn from certain random ensembles, it is established that exact recovery is possible with high probability. First-order algorithms are developed to solve the nonsmooth convex optimization problem with provable iteration complexity guarantees. Insightful tests with synthetic and real network data corroborate the effectiveness of the novel approach in unveiling traffic anomalies across flows and time, and its ability to outperform existing alternatives.

Collaboration


Dive into the Gonzalo Mateos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio G. Marques

King Juan Carlos University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Santiago Segarra

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alejandro Ribeiro

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ioannis D. Schizas

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abolfazl Hashemi

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge