Gonzalo Otero-Irurueta
University of Aveiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gonzalo Otero-Irurueta.
ACS Nano | 2013
Anna L. Pinardi; Gonzalo Otero-Irurueta; Irene Palacio; José I. Martínez; Carlos Sánchez-Sánchez; Marta Tello; Celia Rogero; Albano Cossaro; Alexei Preobrajenski; Berta Gómez-Lor; Andrej Jancarik; Irena G. Stará; Ivo Starý; M. Francisca López; Javier Méndez; José A. Martín-Gago
Surface-assisted cyclodehydrogenation and dehydrogenative polymerization of polycyclic (hetero)aromatic hydrocarbons (PAH) are among the most important strategies for bottom-up assembly of new nanostructures from their molecular building blocks. Although diverse compounds have been formed in recent years using this methodology, a limited knowledge on the molecular machinery operating at the nanoscale has prevented a rational control of the reaction outcome. We show that the strength of the PAH-substrate interaction rules the competitive reaction pathways (cyclodehydrogenation versus dehydrogenative polymerization). By controlling the diffusion of N-heteroaromatic precursors, the on-surface dehydrogenation can lead to monomolecular triazafullerenes and diazahexabenzocoronenes (N-doped nanographene), to N-doped oligomeric or polymeric networks, or to carbonaceous monolayers. Governing the on-surface dehydrogenation process is a step forward toward the tailored fabrication of molecular 2D nanoarchitectures distinct from graphene and exhibiting new properties of fundamental and technological interest.
RSC Advances | 2015
D.M. Tobaldi; M.P. Seabra; Gonzalo Otero-Irurueta; Y. R. de Miguel; Richard Ball; Manoj K. Singh; Robert C. Pullar; J.A. Labrincha
Carbon-modified commercial anatase (KRONOClean 7000®) was quantitatively characterised with XRD for the first time – full phase composition (both crystalline and amorphous content) and microstructure. The material was found to be bimodal anatase, mostly ∼4 nm diameter, but with a small amount of a larger fraction between ∼12 and 15 nm. Absorption in the visible range was confirmed by UV-Vis analysis, whilst XPS showed that an aromatic carbon compound is at the origin of that absorption. Also, the photocatalytic activity of this commercial nano-TiO2 was assessed, monitoring the abatement of NOx using a white LED lamp, irradiating exclusively in the visible region. Experiments simulated an indoor environment, highlighting the potential of this nano-TiO2 for adoption as a standard for visible-light photocatalytic activity, i.e. applications for innovative interior eco-building materials.
Nanotechnology | 2014
Anna L. Pinardi; Giulio Biddau; Kees van De Ruit; Gonzalo Otero-Irurueta; Sara Gardonio; Silvano Lizzit; Robert Schennach; C.F.J. Flipse; María Francisca López; Javier Méndez; Rubén Pérez; José A. Martín-Gago
The interaction of fullerenes with transition metal surfaces leads to the development of an atomic network of ordered vacancies on the metal. However, the structure and formation mechanism of this intricate surface reconstruction is not yet understood at an atomic level. We combine scanning tunneling microscopy, high resolution and temperature programmed-x-ray photoelectrons spectroscopy, and density functional theory calculations to show that the vacancy formation in C60/Pt(111) is a complex process in which fullerenes undergo two significant structural rearrangements upon thermal annealing. At first, the molecules are physisorbed on the surface; next, they chemisorb inducing the formation of an adatom-vacancy pair on the side of the fullerene. Finally, this metastable state relaxes when the adatom migrates away and the vacancy moves under the molecule. The evolution from a weakly-bound fullerene to a chemisorbed state with a vacancy underneath could be triggered by residual H atoms on the surface which prevent a strong surface-adsorbate bonding right after deposition. Upon annealing at about 440 K, when all H has desorbed, the C60 interacts with the Pt surface atoms forming the vacancy-adatom pair. This metastable state induces a small charge transfer and precedes the final adsorption structure.
Langmuir | 2017
D.M. Tobaldi; M. J. Hortigüela Gallo; Gonzalo Otero-Irurueta; Manoj K. Singh; Robert C. Pullar; M.P. Seabra; J.A. Labrincha
We report titania nanoheterostructures decorated with silver, exhibiting tuneable photochromic properties for the first time when stimulated only by visible white light (domestic indoor lamp), with no UV wavelengths. Photochromic materials show reversible color changes under light exposure. However, all inorganic photochromic nanoparticles (NPs) require UV light to operate. Conventionally, multicolor photochromism in Ag-TiO2 films involves a change in color to brownish-gray during UV-light irradiation (i.e., reduction of Ag+ to Ag0) and a (re)bleaching (i.e., (re)oxidation of Ag0 to colorless Ag+) upon visible-light exposure. In this work, on the contrary, we demonstrate visible-light-induced photochromism (ranging from yellow to violet) of 1-10 mol % Ag-modified titania NPs using both spectroscopic and colorimetric CIEL*a*b* analyses. This is not a bleaching of the UV-induced color but a change in color itself under exposure to visible light, and it is shown to be a completely different mechanism-driven by the interfacial charge transfer of an electron from the valence band of TiO2 to that of the AgxO clusters that surround the titania-to the usual UV-triggered photochromism reported in titania-based materials. The quantity of Ag or irradiation time dictated the magnitude and degree of tuneability of the color change, from pale yellow to dark blue, with a rapid change visible only after a few seconds, and the intensity and red shift of surface plasmon resonance induced under visible light also increased. This effect was reversible after annealing in the dark at 100 °C/15 min. Photocatalytic activity under visible light was also assessed against the abatement of nitrogen oxide pollutants, for interior use, therefore showing the coexistence of photochromism and photocatalysis-both triggered by the same wavelength-in the same material, making it a multifunctional material. Moreover, we also demonstrate and explain why X-ray photoelectron spectroscopy is an unreliable technique with such materials.
Carbon | 2017
Jon Azpeitia; Gonzalo Otero-Irurueta; Irene Palacio; José I. Martínez; N. Ruiz del Árbol; G. Santoro; A. Gutiérrez; L. Aballe; M. Foerster; M. Kalbac; V. Vales; F. J. Mompean; M. García-Hernández; José A. Martín-Gago; Carmen Munuera; María Francisca López
We present a new protocol to grow large-area, high-quality single-layer graphene on Cu foils at relatively low temperatures. We use C60 molecules evaporated in ultra high vacuum conditions as carbon source. This clean environment results in a strong reduction of oxygen-containing groups as depicted by X-ray photoelectron spectroscopy (XPS). Unzipping of C60 is thermally promoted by annealing the substrate at 800ºC during evaporation. The graphene layer extends over areas larger than the Cu crystallite size, although it is changing its orientation with respect to the surface in the wrinkles and grain boundaries, producing a modulated ring in the low energy electron diffraction (LEED) pattern. This protocol is a self-limiting process leading exclusively to one single graphene layer. Raman spectroscopy confirms the high quality of the grown graphene. This layer exhibits an unperturbed Dirac-cone with a clear n-doping of 0.77 eV, which is caused by the interaction between graphene and substrate. Density functional theory (DFT) calculations show that this interaction can be induced by a coupling between graphene and substrate at specific points of the structure leading to a local sp3 configuration, which also contribute to the D-band in the Raman spectra.
Carbon | 2018
Irene Palacio; Gonzalo Otero-Irurueta; C. Alonso; José I. Martínez; Elena López-Elvira; Isabel Muñoz-Ochando; Horacio J. Salavagione; María Francisca López; M. García-Hernández; Javier Méndez; Gary Ellis; José A. Martín-Gago
While high-quality defect-free epitaxial graphene can be efficiently grown on metal substrates, strong interaction with the supporting metal quenches its outstanding properties. Thus, protocols to transfer graphene to insulating substrates are obligatory, and these often severely impair graphene properties by the introduction of structural or chemical defects. Here we describe a simple and easily scalable general methodology to structurally and electronically decouple epitaxial graphene from Pt(111) and Ir(111) metal surfaces. A multi-technique characterization combined with ab-initio calculations was employed to fully explain the different steps involved in the process. It was shown that, after a controlled electrochemical oxidation process, a single-atom thick metal-hydroxide layer intercalates below graphene, decoupling it from the metal substrate. This decoupling process occurs without disrupting the morphology and electronic properties of graphene. The results suggest that suitably optimized electrochemical treatments may provide effective alternatives to current transfer protocols for graphene and other 2D materials on diverse metal surfaces.
Angewandte Chemie | 2018
Nerea Ruiz del Árbol; Irene Palacio; Gonzalo Otero-Irurueta; José I. Martínez; Pedro L. de Andrés; Oleksander Stetsovych; María Moro-Lagares; Pingo Mutombo; Martin Švec; Pavel Jelínek; Albano Cossaro; Luca Floreano; Gary Ellis; María Francisca López; José A. Martín-Gago
Abstract On‐surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices. A facile on‐surface chemistry route has now been used to synthesize the strong electron‐acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para‐aminophenol precursors. The mechanism is described using a combination of in situ surface characterization techniques and theoretical methods. Owing to a strong surface‐molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends, inducing an intramolecular charge redistribution and leading to partial conjugation of the rings, conferring azo‐character at the nitrogen sites.
Journal of Physical Chemistry C | 2014
Mikel Abadia; Rubén González-Moreno; Ane Sarasola; Gonzalo Otero-Irurueta; Alberto Verdini; Luca Floreano; Aran Garcia-Lekue; Celia Rogero
International Journal of Heat and Mass Transfer | 2016
L. Syam Sundar; Gonzalo Otero-Irurueta; Manoj K. Singh; Antonio C.M. Sousa
Solar Energy Materials and Solar Cells | 2017
M. G. Sousa; A.F. da Cunha; J. P. Teixeira; J. P. Leitão; Gonzalo Otero-Irurueta; Manoj K. Singh