Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gonzalo Santoro is active.

Publication


Featured researches published by Gonzalo Santoro.


Nature Communications | 2014

Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments.

Karl Håkansson; Andreas B. Fall; Fredrik Lundell; Shun Yu; Christina Krywka; Stephan V. Roth; Gonzalo Santoro; Mathias Kvick; Lisa Prahl Wittberg; Lars Wågberg; L. Daniel Söderberg

Cellulose nanofibrils can be obtained from trees and have considerable potential as a building block for biobased materials. In order to achieve good properties of these materials, the nanostructure must be controlled. Here we present a process combining hydrodynamic alignment with a dispersion–gel transition that produces homogeneous and smooth filaments from a low-concentration dispersion of cellulose nanofibrils in water. The preferential fibril orientation along the filament direction can be controlled by the process parameters. The specific ultimate strength is considerably higher than previously reported filaments made of cellulose nanofibrils. The strength is even in line with the strongest cellulose pulp fibres extracted from wood with the same degree of fibril alignment. Successful nanoscale alignment before gelation demands a proper separation of the timescales involved. Somewhat surprisingly, the device must not be too small if this is to be achieved.


Advanced Materials | 2013

A Direct Evidence of Morphological Degradation on a Nanometer Scale in Polymer Solar Cells

Christoph J. Schaffer; Claudia M. Palumbiny; Martin A. Niedermeier; Christian Jendrzejewski; Gonzalo Santoro; Stephan V. Roth; Peter Müller-Buschbaum

In situ measurement of a polymer solar cell using micro grazing incidence small angle X-ray scattering (μGISAXS) and current-voltage tracking is demonstrated. While measuring electric characteristics under illumination, morphological changes are probed by μGISAXS. The X-ray beam (green) impinges on the photo active layer with a shallow angle and scatters on a 2d detector. Degradation is explained by the ongoing nanomorphological changes observed.


Applied Physics Letters | 2014

Silver substrates for surface enhanced Raman scattering: Correlation between nanostructure and Raman scattering enhancement

Gonzalo Santoro; Shun Yu; Matthias Schwartzkopf; Peng Zhang; Sarathlal Koyiloth Vayalil; Johannes F. H. Risch; M. Rübhausen; Margarita Hernández; Concepción Domingo; Stephan V. Roth

The fabrication of substrates for Surface Enhanced Raman Scattering (SERS) applications matching the needs for high sensitive and reproducible sensors remains a major scientific and technological issue. We correlate the morphological parameters of silver (Ag) nanostructured thin films prepared by sputter deposition on flat silicon (Si) substrates with their SERS activity. A maximum enhancement of the SERS signal has been found at the Ag percolation threshold, leading to the detection of thiophenol, a non-resonant Raman probe, at concentrations as low as 10−10M, which corresponds to enhancement factors higher than 7 orders of magnitude. To gain full control over the developed nanostructure, we employed the combination of in-situ time-resolved microfocus Grazing Incidence Small Angle X-ray Scattering with sputter deposition. This enables to achieve a deepened understanding of the different growth regimes of Ag. Thereby an improved tailoring of the thin film nanostructure for SERS applications can be realized.


ACS Applied Materials & Interfaces | 2015

Real-Time Monitoring of Morphology and Optical Properties during Sputter Deposition for Tailoring Metal−Polymer Interfaces

Matthias Schwartzkopf; Gonzalo Santoro; Calvin J. Brett; André Rothkirch; Oleksandr Polonskyi; Alexander Hinz; Ezzeldin Metwalli; Yuan Yao; Thomas Strunskus; Franz Faupel; Peter Müller-Buschbaum; Stephan V. Roth

The reproducible low-cost fabrication of functional metal-polymer nanocomposites with tailored optoelectronic properties for advanced applications remains a major challenge in applied nanotechnology. To obtain full control over the nanostructural evolution at the metal-polymer interface and its impact on optoelectronic properties, we employed combined in situ time-resolved microfocus grazing incidence small angle X-ray scattering (μGISAXS) with in situ UV/vis specular reflectance spectroscopy (SRS) during sputter deposition of gold on thin polystyrene films. On the basis of the temporal evolution of the key scattering features in the real-time μGISAXS experiment, we directly observed four different growth regimes: nucleation, isolated island growth, growth of larger aggregates via partial coalescence, and continuous layer growth. Moreover, their individual thresholds were identified with subnanometer resolution and correlated to the changes in optical properties. During sputter deposition, a change in optical reflectivity of the pristine gray-blue PS film was observed ranging from dark blue color due to the presence of isolated nanoclusters at the interface to bright red color from larger Au aggregates. We used simplified geometrical assumptions to model the evolution of average real space parameters (distance, size, density, contact angle) in excellent agreement with the qualitative observation of key scattering features. A decrease of contact angles was observed during the island-to-percolation transition and confirmed by simulations. Furthermore, a surface diffusion coefficient according to the kinetic freezing model and interfacial energy of Au on PS at room temperature were calculated based on a real-time experiment. The morphological characterization is complemented by X-ray reflectivity, optical, and electron microscopy. Our study permits a better understanding of the growth kinetics of gold clusters and their self-organization into complex nanostructures on polymer substrates. It opens up the opportunity to improve nanofabrication and tailoring of metal-polymer nanostructures for optoelectronic applications, organic photovoltaics, and plasmonic-enhanced technologies.


Review of Scientific Instruments | 2014

Use of intermediate focus for grazing incidence small and wide angle x-ray scattering experiments at the beamline P03 of PETRA III, DESY.

Gonzalo Santoro; Adeline Buffet; Ralph Döhrmann; Shun Yu; Volker Körstgens; Peter Müller-Buschbaum; Ulf W. Gedde; Mikael S. Hedenqvist; Stephan V. Roth

We describe the new experimental possibilities of the micro- and nanofocus X-ray scattering beamline P03 of the synchrotron source PETRA III at DESY, Hamburg (Germany), which arise from experiments with smaller beam sizes in the micrometer range. This beamline has been upgraded recently to perform new kinds of experiments. The use of an intermediate focus allows for reducing the beam size of microfocused hard X-rays while preserving a large working distance between the focusing elements and the focus position. For the first time, this well-known methodology has been employed to grazing incidence small- and wide-angle X-ray scattering (GISAXS/GIWAXS). As examples, we highlight the applications to in situ studies using microfluidic devices in GISAXS geometry as well as the investigation of the crystallinity of thin films in GIWAXS geometry.


ACS Applied Materials & Interfaces | 2015

Patterned Diblock Co-Polymer Thin Films as Templates for Advanced Anisotropic Metal Nanostructures

Stephan V. Roth; Gonzalo Santoro; Johannes F. H. Risch; Shun Yu; Matthias Schwartzkopf; Torsten Boese; Ralph Döhrmann; Peng Zhang; Bastian Besner; Philipp Bremer; Dieter Rukser; M. Rübhausen; Nicholas J. Terrill; Paul A. Staniec; Yuan Yao; Ezzeldin Metwalli; Peter Müller-Buschbaum

We demonstrate glancing-angle deposition of gold on a nanostructured diblock copolymer, namely polystyrene-block-poly(methyl methacrylate) thin film. Exploiting the selective wetting of gold on the polystyrene block, we are able to fabricate directional hierarchical structures. We prove the asymmetric growth of the gold nanoparticles and are able to extract the different growth laws by in situ scattering methods. The optical anisotropy of these hierarchical hybrid materials is further probed by angular resolved spectroscopic methods. This approach enables us to tailor functional hierarchical layers in nanodevices, such as nanoantennae arrays, organic photovoltaics, and sensor electronics.


Soft Matter | 2014

Probing evaporation induced assembly across a drying colloidal droplet using in situ small-angle X-ray scattering at the synchrotron source

Debasis Sen; Jitendra Bahadur; S. Mazumder; Gonzalo Santoro; Shun Yu; Stephan V. Roth

Colloidal particles in a tiny drying droplet are forced to assemble due to attractive capillary forces. Jamming of the particles throughout the droplet remains either isotropic or anisotropic depending upon the drying kinetics and the physicochemical environment. In this work, we explore the dynamical evolution of such an assembly process across a single evaporative droplet by in situ scanning small-angle scattering using a micro-focused X-ray beam at the synchrotron source. A methodology has been elucidated to differentiate quantitatively between the isotropic and the anisotropic jamming process. Switching of jamming behaviour depending on the initial particle volume fraction in the droplet has been demonstrated. Three distinct stages of assembly, associated with droplet shrinkage, have been revealed even during isotropic jamming. This is in contrast to the drying of a pure liquid droplet under diffusion limited evaporation. It has been established that such in situ scattering measurements can also be used to estimate the temporal evolutions of the viscosity of a drying suspension as well as the diffusivity of nanoparticles in a droplet.


Review of Scientific Instruments | 2013

A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

Ralph Döhrmann; Stephan Botta; Adeline Buffet; Gonzalo Santoro; Kai Schlage; Matthias Schwartzkopf; Sebastian Bommel; Johannes F. H. Risch; Roman Mannweiler; Simon Brunner; Ezzeldin Metwalli; Peter Müller-Buschbaum; Stephan V. Roth

HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibilities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.


Langmuir | 2013

In Situ Grazing Incidence Small-Angle X-ray Scattering Investigation of Polystyrene Nanoparticle Spray Deposition onto Silicon

Gerd Herzog; Gunthard Benecke; Adeline Buffet; Berit Heidmann; Jan Perlich; Johannes F. H. Risch; Gonzalo Santoro; Matthias Schwartzkopf; Shun Yu; Wilfried Wurth; Stephan V. Roth

We investigated the spray deposition and subsequent self-assembly during drying of a polystyrene nanoparticle dispersion with in situ grazing incidence small-angle X-ray scattering at high time resolution. During the fast deposition of the dispersion and the subsequent evaporation of the solvent, different transient stages of nanoparticle assembly can be identified. In the first stage, the solvent starts to evaporate without ordering of the nanoparticles. During the second stage, large-scale structures imposed by the breakup of the liquid film are observable. In this stage, the solvent evaporates further and nanoparticle ordering starts. In the late third drying stage, the nanoparticles self-assemble into the final layer structure.


ACS Applied Materials & Interfaces | 2015

Tracking Structural Changes in Lipid-based Multicomponent Food Materials due to Oil Migration by Microfocus Small-Angle X-ray Scattering

Svenja K. Reinke; Stephan V. Roth; Gonzalo Santoro; Josélio Batista Vieira; Stefan Heinrich; Stefan Palzer

One of the major problems in the confectionery industry is chocolate fat blooming, that is, the formation of white defects on the chocolate surface due to fat crystals. Nevertheless, the mechanism responsible for the formation of chocolate fat blooming is not fully understood yet. Chocolate blooming is often related to the migration of lipids to the surface followed by subsequent recrystallization. Here, the migration pathway of oil into a cocoa butter matrix with different dispersed particles was investigated by employing microfocus small-angle X-ray scattering and contact angle measurements. Our results showed that the chocolate powders get wet by the oil during the migration process and that the oil is migrating into the pores within seconds. Subsequently, cocoa butter is dissolved by the oil, and thus, its characteristic crystalline structure is lost. The chemical process provoked by the dissolution is also reflected by microscopical changes of the surface morphology of chocolate model samples after several hours from the addition of oil to the sample. Finally, the surface morphology was investigated before and after oil droplet exposure and compared to that of water exposure, whereby water seems to physically migrate through the particles, namely cocoa powder, sucrose, and milk powder, which dissolve in the presence of water.

Collaboration


Dive into the Gonzalo Santoro's collaboration.

Top Co-Authors

Avatar

Stephan V. Roth

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Shun Yu

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Ellis

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Sebastian Bommel

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Peng Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Marco

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Debasis Sen

Bhabha Atomic Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jitendra Bahadur

Bhabha Atomic Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge