Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gopal Achari is active.

Publication


Featured researches published by Gopal Achari.


Environmental Management | 2009

A Comparative Approach for Ranking Contaminated Sites Based on the Risk Assessment Paradigm Using Fuzzy PROMETHEE

Kejiang Zhang; Cheryl Kluck; Gopal Achari

A ranking system for contaminated sites based on comparative risk methodology using fuzzy Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) was developed in this article. It combines the concepts of fuzzy sets to represent uncertain site information with the PROMETHEE, a subgroup of Multi-Criteria Decision Making (MCDM) methods. Criteria are identified based on a combination of the attributes (toxicity, exposure, and receptors) associated with the potential human health and ecological risks posed by contaminated sites, chemical properties, site geology and hydrogeology and contaminant transport phenomena. Original site data are directly used avoiding the subjective assignment of scores to site attributes. When the input data are numeric and crisp the PROMETHEE method can be used. The Fuzzy PROMETHEE method is preferred when substantial uncertainties and subjectivities exist in site information. The PROMETHEE and fuzzy PROMETHEE methods are both used in this research to compare the sites. The case study shows that this methodology provides reasonable results.


Water Research | 2009

A comparison of several nanoscale photocatalysts in the degradation of a common pollutant using LEDs and conventional UV light.

Jyoti P. Ghosh; Ruohong Sui; Cooper H. Langford; Gopal Achari; Curtis P. Berlinguette

A comparative study on the photocatalytic activities of four different catalysts, P-25 TiO(2), TiO(2) nanofibers, tin-doped TiO(2) nanofibers under UV light irradiation at 350 nm, and coumarin (C-343) coated TiO(2) nanofibers at 436 nm light emitting diodes (LED) is reported. Catalysts performance has been compared based on their reflectance spectrum and activity. A common water contaminant 4-chlorophenol was used as a substrate to compare the activity of the different catalysts under both direct and dye sensitized conditions. Results indicated that amongst the four different catalysts the activity of P-25 was the highest. However the activity of C-343 coated TiO(2) nanofibers in the LED (436 nm) based reactor was competitive. Identification of reaction intermediates implied that the reaction pathways under UV (band gap) and visible (dye sensitized) irradiation were different. Nonetheless, ring opening took place in all reactions with both maleic and dihydroxymaleic have been identified as intermediates. The study indicates that ordered arrays of TiO(2) irradiated by panels of arrays of low cost high intensity LEDs might be used for the design of reactors. The near monochromaticity, long life, and operation under direct currents are advantages of using LEDs.


Journal of Physical Chemistry A | 2008

Characterization of an LED Based Photoreactor to Degrade 4-Chlorophenol in an Aqueous Medium Using Coumarin (C-343) Sensitized TiO2

Jyoti P. Ghosh; Cooper H. Langford; Gopal Achari

A detailed performance evaluation of a simple high intensity LED based photoreactor exploiting a narrow wavelength range of the LED to match the spectrum of a dye in a photocatalysis system is reported. A dye sensitized (coumarin-343, lambda max = 446 nm) TiO 2 photocatalyst was used for the degradation of 4-chlorophenol (4-CP) in an aqueous medium using the 436 nm LED based photoreactor. The LED reactor performed competitively with a conventional multilamp reactor and sunlight in the degradation of 4-CP. Light intensities entering the reaction vessel were measured by conventional ferrioxalate actinometry. The results can be fitted by approximate first order kinetic behavior in this system. Hydroxyl radicals were detected by spin trapping EPR, and effects of OH radical quenchers on kinetics suggest that the reaction is initiated by these radicals or their equivalents. LEDs operating at competitive intensities offer a number of advantages to the photochemist or the environmental engineer via long life, efficient current to light conversion, narrow bandwidth, forward directed output, and direct current power for remote operation. Matching light source spectrum to chromophore is a key.


Waste Management & Research | 2006

A model to estimate the methane generation rate constant in sanitary landfills using fuzzy synthetic evaluation

Anurag Garg; Gopal Achari; R. C. Joshi

This paper presents a model using fuzzy synthetic evaluation to estimate the methane generation rate constant, k, for landfills. Four major parameters, precipitation, temperature, waste composition and landfill depth were used as inputs to the model. Whereas, these parameters are known to impact the methane generation, mathematical relationships between them and the methane generation rate constant required to estimate methane generation in landfills, are not known. In addition, the spatial variations of k within a landfill combined with the necessity of site-specific information to estimate its value, makes k one of the most elusive parameters in the accurate prediction of methane generation within a landfill. In this paper, a fuzzy technique was used to develop a model to predict the methane generation rate constant. The model was calibrated and verified using k values from 42 locations. Data from 10 sites were used to calibrate the model and the rest were used to verify it. The model predictions are reasonably accurate. A sensitivity analysis was also conducted to investigate the effect of uncertainty in the input parameters on the generation rate constant.


Journal of Contaminant Hydrology | 2009

Fuzzy-stochastic characterization of site uncertainty and variability in groundwater flow and contaminant transport through a heterogeneous aquifer

Kejiang Zhang; Hua Li; Gopal Achari

Site variabilities and uncertainties in data and information lead to significant spread in results of groundwater flow and contaminant transport models. A framework for hybrid propagation of random uncertainties represented by probability theory; nonrandom uncertainties represented by fuzzy set theory; and site variabilities represented by geostatistics was developed in this research. A case study was provided to explain the computational algorithm. The methodology presented here can be applied to complex environments where there are site variabilities as well as uncertainties of different kinds. The algorithm is suited when uncertainties in some variables may be best represented as fuzzy numbers whereas in others as probability distributions and both form part of the same governing equation.


Water Research | 2012

An integrated performance assessment framework for water treatment plants

Kejiang Zhang; Gopal Achari; Rehan Sadiq; Cooper H. Langford; Mohammed H. Dore

An innovative framework for the performance assessment of a traditional water treatment plant (WTP) is presented that integrates the concepts of reliability, robustness, and Quantitative Microbial Risk Assessment (QMRA). Performance assessment for a WTP comprised of three units (i.e., unit 1: Coagulation/Flocculation and Sedimentation; unit 2: Filtration, and unit 3: Disinfection) was conducted. Performance functions for units 1, 2, and units 1 and 2 combined, were constructed by integrating turbidity robustness indices. Performance function for chlorine disinfection was developed based on the difference between achieved and required CT values. A health-based performance function was developed by comparing the target daily infection rate to the site-specific infection rate. It was used to identify whether the health-based target was met during the failures of units 1 to 3. Results obtained from the proposed performance functions can be used by operators to ensure that multiple barriers perform successfully under variable conditions.


Journal of Hazardous Materials | 2010

Photocatalytic dechlorination of PCB 138 using leuco-methylene blue and visible light; reaction conditions and mechanisms.

Maryam Izadifard; Cooper H. Langford; Gopal Achari

A study of dechlorination of PCB 138, under visible light employing methylene blue (MB) and triethylamine (TEA) in acetonitrile/water has been conducted to investigate the details of the mechanism of dechlorination and to determine the efficiency of the process for this representative congener. Two other amines, N-methyldiethanolamine (MEDA) and (triethanolamine) TEOA also replaced TEA and two other solvents, methanol and ethanol replacing acetonitrile were examined for effects on reaction rates. The results show that PCB 138 can be dechlorinated efficiently in this photocatalytic reaction. Clarifying ambiguities in several previous reports, the reduced form of MB, leuco-methylene blue (LMB) was identified as responsible for the photoreaction with its excited state transferring an electron to PCBs; oxidized LMB (i.e. MB) is reduced back to LMB by the excess amine present. The reaction depends on a cycle driven by the amine as a sacrificial electron donor. MEDA proved to be the most efficient electron donor; apparently in consequence of the most favourable steady state concentration of LMB. Methanol and ethanol may be used to replace acetonitrile with little change in the efficiency of the reaction.


Chemosphere | 2008

The pathway of dechlorination of PCB congener by a photochemical chain process in 2-propanol: the role of medium and quenching.

Maryam Izadifard; Gopal Achari; Cooper H. Langford

As part of a program aimed at developing a field process for cleanup of PCB contaminated soils using photochemistry in basic 2-propanol, additional details of the dechlorination pathway are presented. The mechanism involves a chain reaction with both homolytic photochemical C-Cl bond fission and electron transfer steps producing PCB anion radicals. Kinetics of dechlorination of various congeners show patterns of relative rates associated with the basic 2-propanol medium that are not found in other media because both electron transfer and photochemical homolysis steps determine overall rates of dechlorination and govern the pathways and relative concentrations of intermediates. The electron transfer steps display opposite structure-reactivity correlations to the photo-homolysis, C-Cl bond fission steps. Oxygen quenching is shown to differentially affect both types of steps. In contrast to the suggestion that inter system crossing can be highly efficient with reaction originating from a PCB triplet, oxygen quenching data suggest that a significant minimum of the quantum yield is non-quenchable, presumably because of a reaction path from the PCB singlet. This may help to explain why exclusion of air is not entirely necessary in practice.


Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2014

Photocatalytic degradation of agricultural antibiotics using a UV-LED light source.

Aramice Y.S. Malkhasian; Maryam Izadifard; Gopal Achari; Cooper H. Langford

With a view to developing a UV-LED photocatalytic reactor for small and remote water systems, the degradation of three representative agriculturally produced contaminants, two antibiotics and an endocrine disruptor hormone, was evaluated in a bench 365 nm LED photoreactor using a slurry of the well-known Degussa P25® (TiO2) as photocatalyst. Use of an additional electron capture additives O2 and H2O2 was also assessed. Loss of the parent organic compounds was tracked by HPLC or UV absorbance and mineralization, where feasible, was studied with TOC analysis with conventional instrumentation. In all cases, degradation is significant with moderate light dose. Lab data suggest log reduction with light delivery less than 2.2 kWhr per cubic meter light delivery.


Environmental Science & Technology | 2010

Photocatalytic Dechlorination of Polychlorinated Biphenyls Using Leuco-methylene Blue Sensitization, Broad Spectrum Visible Lamps, or Light Emitting Diodes

Maryam Izadifard; Cooper H. Langford; Gopal Achari

Photocatalytic routes to dechlorinate polychlorinated biphenyls (PCBs) have considerable potential for development. This paper describes efficient dye-photocatalyzed processes which can be driven by long wavelength light sources including light-emitting diodes (LEDs), fluorescent lamps, and quite probably sunlight. The reduced form of methylene blue (MB), leuco-methylene blue (LMB), has previously been found to photoinduce dechlorination of chloroaromatics with an electron transfer from its triplet excited state. Sodium borohydride, used in this case is an efficient sacrificial reductant, which can maintain LMB as the major species in competition with air oxidation of LMB to MB. There is also evidence that it plays a further (chain reaction) role in promoting the LMB photodechlorination process as well. The generality of the photoelectron transfer from reduced members of the phenothiazine dye family is demonstrated with phenothiazine and leuco-methylene green when a wavelength (UV) is chosen to produce the highly reductive triplet. It is likely that dechlorination can be initiated by many triplet excited states with adequate reduction potential.

Collaboration


Dive into the Gopal Achari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen La

University of Calgary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge