Gopal K. Soppa
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gopal K. Soppa.
The FASEB Journal | 2010
Michael Ibrahim; Abeer Al Masri; Manoraj Navaratnarajah; Urszula Siedlecka; Gopal K. Soppa; Alexey Moshkov; Sara Abou Al-Saud; Julia Gorelik; Magdi H. Yacoub; Cesare M. Terracciano
Prolonged mechanical unloading (UN) of the heart is associated with detrimental changes to the structure and function of cardiomyocytes. The mechanisms underlying these changes are unknown. In this study, we report the influence of UN on excitation‐contraction coupling, Ca2+‐induced Ca2+ release (CICR) in particular, and transverse (t)‐tubule structure. UN was induced in male Lewis rat hearts by heterotopic abdominal heart transplantation. Left ventricular cardiomyocytes were isolated from the transplanted hearts after 4 wk and studied using whole‐cell patch clamping, confocal microscopy, and scanning ion conductance microscopy (SICM). Recipient hearts were used as control (C). UN reduced the volume of cardiomyocytes by 56.5% compared with C (UN, n=90; C, n=59; P<0.001). The variance of time‐to‐peak of the Ca2+ transients was significantly increased in unloaded cardiomyocytes (UN 227.4±24.9 ms2, n=42 vs. C 157.8±18.0 ms2, n=40; P<0.05). UN did not alter the action potential morphology or whole‐cell L‐type Ca2+ current compared with C, but caused a significantly higher Ca2+ spark frequency (UN 3.718±0.85 events/ 100 µm/s, n=47 vs. C 0.908±0.186 events/100 µm/s, n=45; P<0.05). Confocal studies showed irregular distribution of the t tubules (power of the normal t‐tubule frequency: UN 8.13±1.12×105, n=57 vs. C 20.60±3.174 × 105, n=56; P< 0.001) and SICM studies revealed a profound disruption to the openings of the t tubules and the cell surface in unloaded cardiomyocytes. We show that UN leads to a functional uncoupling of the CICR process and identify disruption of the t‐tubule‐sarcoplasmic reticulum interaction as a possible mechanism.—Ibrahim, M., Al Masri, A., Navaratnarajah, M., Siedlecka, U., Soppa, G. K., Moshkov, A., Abou AlSaud, S., Gorelik, J., Yacoub, M. H., Terracciano, C. M. N. Prolonged mechanical unloading affects cardiomyocyte excitation‐contraction coupling, transverse‐tubule structure, and the cell surface. FASEB J. 24, 3321–3329 (2010). www.fasebj.org
Cardiovascular Research | 2008
Gopal K. Soppa; Joon Lee; Mark A. Stagg; Leanne E. Felkin; Paul J.R. Barton; Urszula Siedlecka; Samuel Youssef; Magdi H. Yacoub; Cesare M. Terracciano
Abstract Aims Combined left ventricular assist device (LVAD) and pharmacological therapy has been proposed to favour myocardial recovery in patients with end-stage heart failure (HF). Clenbuterol (Clen), a β2-adrenoceptor (β2-AR) agonist, has been used as a part of this strategy. In this study, we investigated the direct effects of clenbuterol on unloaded myocardium in HF. Methods and results Left coronary artery ligation or sham operation was performed in male Lewis rats. After 4–6 weeks, heterotopic abdominal transplantation of the failing hearts into normal recipients was performed to induce LV unloading (UN). Recipient rats were treated with saline (Sal) or clenbuterol (2 mg/kg/day) via osmotic minipumps (HF + UN + Sal or HF + UN + Clen) for 7 days. Non-transplanted HF animals were treated with Sal (Sham + Sal, HF + Sal) or clenbuterol (HF + Clen). LV myocytes were isolated and studied using optical, fluorescence, and electrophysiological techniques. Clenbuterol treatment improved in vivo LV function measured with echocardiography (LVEF (%): HF 35.9 ± 2 [16], HF + Clen 52.1 ± 1.4 [16]; P < 0.001; mean ± SEM [n]). In combination with unloading, clenbuterol increased sarcomere shortening (amplitude (µm): HF + UN + Clen 0.1 ± 0.01 [50], HF + UN + Sal 0.07 ± 0.01 [38]; P < 0.001) by normalizing the depressed myofilament sensitivity to Ca2+ (slope of the linear relationship between Ca2+ transient and sarcomere shortening hysteresis loop during relaxation (μm/ratio unit): HF + UN + Clen 2.13 ± 0.2 [52], HF + UN + Sal 1.42 ± 0.13 [38]; P < 0.05). Conclusion Clenbuterol treatment of failing rat hearts, alone or in combination with mechanical unloading, improves LV function at the whole-heart and cellular levels by affecting cell morphology, excitation–contraction coupling, and myofilament sensitivity to calcium. This study supports the use of this drug in the strategy to enhance recovery in HF patients treated with LVADs and also begins to elucidate some of the possible cellular mechanisms responsible for the improvement in LV function.
Current Opinion in Cardiology | 2008
Gopal K. Soppa; Paul J.R. Barton; Cesare M. Terracciano; Magdi H. Yacoub
Purpose of review There is considerable increase in the use of left ventricular assist devices for the treatment of severe heart failure. Traditionally viewed as a bridge to transplantation and more recently as a destination therapy, left ventricular assist device support is now recognized to offer potential for myocardial recovery through reverse remodeling, a potential that is further enhanced by combination with pharmacologic therapy. In this study, we examine the molecular changes associated with left ventricular assist device support and how these may contribute to the recovery process. Recent findings Studies in both patients and experimental models have demonstrated that improved function is associated with alterations in several key pathways including cell survival, cytokine signaling, calcium handling, adrenergic receptor signaling, cytoskeletal and contractile proteins, energy metabolism, extracellular matrix, and endothelial and microvascular functions. Moreover, the unique research opportunities offered by left ventricular assist device analysis are beginning to distinguish changes associated with recovery from those of mechanical unloading alone and identify potential predictors and novel therapeutic targets capable of enhancing myocardial repair. Summary Significant progress has been made toward revealing molecular changes associated with myocardial recovery from heart failure. These studies also offer new insight into the pathogenesis of heart failure and point to novel therapeutic strategies.
Circulation Research | 2008
Mark A. Stagg; Edward A. Carter; Nadia Sohrabi; Urszula Siedlecka; Gopal K. Soppa; Fiona Mead; Narla Mohandas; Pamela M. Taylor-Harris; Anthony J. Baines; Pauline M. Bennett; Magdi H. Yacoub; Jennifer C. Pinder; Cesare M. Terracciano
The 4.1 proteins are a family of multifunctional adaptor proteins. They promote the mechanical stability of plasma membranes by interaction with the cytoskeletal proteins spectrin and actin and are required for the cell surface expression of a number of transmembrane proteins. Protein 4.1R is expressed in heart and upregulated in deteriorating human heart failure, but its functional role in myocardium is unknown. To investigate the role of protein 4.1R on myocardial contractility and electrophysiology, we studied 4.1R-deficient (knockout) mice (4.1R KO). ECG analysis revealed reduced heart rate with prolonged Q-T interval in 4.1R KO. No changes in ejection fraction and fractional shortening, assessed by echocardiography, were found. The action potential duration in isolated ventricular myocytes was prolonged in 4.1R KO. Ca2+ transients were larger and slower to decay in 4.1R KO. The sarcoplasmic reticulum Ca2+ content and Ca2+ sparks frequency were increased. The Na+/Ca2+ exchanger current density was reduced in 4.1R KO. The transient inward current inactivation was faster and the persistent Na+ current density was increased in the 4.1R KO group, with possible effects on action potential duration. Although no major morphological changes were noted, 4.1R KO hearts showed reduced expression of NaV1.5&agr; and increased expression of protein 4.1G. Our data indicate an unexpected and novel role for the cytoskeletal protein 4.1R in modulating the functional properties of several cardiac ion transporters with consequences on cardiac electrophysiology and with possible significant roles during normal cardiac function and disease.
Journal of Heart and Lung Transplantation | 2008
Gopal K. Soppa; Joon Lee; Mark A. Stagg; Urszula Siedlecka; Samuel Youssef; Magdi H. Yacoub; Cesare M. Terracciano
BACKGROUND Prolonged unloading using left ventricular (LV) assist devices (LVADs) leads to unloading-induced atrophy with altered cardiomyocyte contractility. The causes for this time-dependent deterioration of myocardial function are unclear. Our aim was to determine the effects of prolonged mechanical unloading on cardiomyocyte function and, more specifically, on Ca(2+) cycling and myofilament sensitivity to Ca(2+). METHODS LV unloading was induced by heterotopic abdominal transplantation (UN) in rats for 5 weeks. Recipient hearts were used as controls (REC). LV myocytes were isolated and cardiomyocyte area measured by planimetry, sarcomere length measured by Fourier analysis of digitized cardiomyocyte images, and cytoplasmic [Ca(2+)] monitored using Indo-1. Myofilament sensitivity to Ca(2+) was assessed as the slope of the linear relationship between Indo-1 ratio and sarcomere shortening during relaxation. RESULTS UN cardiomyocyte area was smaller compared with REC (mean +/- SEM: UN 2,503 +/- 78 microm(2) [n = 132], REC 3,856 +/- 89 microm(2) [n = 116]; p < 0.001). UN cardiomyocytes had a smaller sarcomere shortening amplitude (UN 0.08 +/- 0.01 microm [n = 37], REC 0.11 +/- 0.01 microm [n = 38]; p < 0.01), despite normal Ca(2+) transient amplitude (UN 0.13 +/- 0.01 Indo-1 ratio units [n = 37], REC 0.11 +/- 0.01 Indo-1 ratio units [n = 38]; p = non-significant). Myofilament sensitivity to Ca(2+) was reduced in UN (UN 2.0 +/- 1.2 microm/ratio unit [n = 20], REC 3.7 +/- 0.4 microm/ratio unit [n = 22]; p < 0.01). Sarcoplasmic reticulum (SR) Ca(2+) uptake (assessed by 20 mmol/liter caffeine) was also reduced in UN (UN 84.3 +/- 0.79% relative contribution [n = 22], REC 89.8 +/- 0.67% relative contribution [n = 24]; p < 0.001). CONCLUSIONS Prolonged myocardial unloading causes depressed contractility due to reduced SR Ca(2+) uptake and myofilament sensitivity to Ca(2+). These effects may be relevant with regard to myocardial performance after prolonged LVAD support.
American Journal of Physiology-heart and Circulatory Physiology | 2008
Urszula Siedlecka; M. Arora; T. Kolettis; Gopal K. Soppa; Joon Lee; Mark A. Stagg; Sian E. Harding; Magdi H. Yacoub; Cesare M. Terracciano
Clenbuterol, a compound classified as a beta2-adrenoceptor (AR) agonist, has been employed in combination with left ventricular assist devices (LVADs) to treat patients with severe heart failure. Previous studies have shown that chronic administration of clenbuterol affects cardiac excitation-contraction coupling. However, the acute effects of clenbuterol and the signaling pathway involved remain undefined. We investigated the acute effects of clenbuterol on isolated ventricular myocyte sarcomere shortening, Ca2+ transients, and L-type Ca2+ current and compared these effects to two other clinically used beta2-AR agonists: fenoterol and salbutamol. Clenbuterol (30 microM) produced a negative inotropic response, whereas fenoterol showed a positive inotropic response. Salbutamol had no significant effects. Clenbuterol reduced Ca2+ transient amplitude and L-type Ca2+ current. Selective beta1-AR blockade did not affect the action of clenbuterol on sarcomere shortening but significantly reduced contractility in the presence of fenoterol and salbutamol (P < 0.05). Incubation with 2 microg/ml pertussis toxin significantly reduced the negative inotropic effects of 30 microM clenbuterol. In addition, overexpression of inhibitory G protein (Gi) by adenoviral transfection induced a stronger clenbuterol-mediated negative inotropic effect, suggesting the involvement of the Gi protein. We conclude that clenbuterol does not increase and, at high concentrations, significantly depresses contractility of isolated ventricular myocytes, an effect not seen with fenoterol or salbutamol. In its negative inotropism, clenbuterol predominantly acts through Gi, and the consequent downstream signaling pathways activation may explain the beneficial effects observed during chronic administration of clenbuterol in patients treated with LVADs.
Annals of the New York Academy of Sciences | 2007
Cesare M. Terracciano; Maren U. Koban; Gopal K. Soppa; Urszula Siedlecka; Joon Lee; Mark A. Stagg; Magdi H. Yacoub
Abstract: Different strategies can, at least in certain conditions, prevent or reverse myocardial remodeling due to heart failure and induce myocardial functional improvement. Na+/Ca2+ exchanger (NCX) is considered a major player in the pathophysiology of heart failure but its role in reverse remodeling is unknown. A combination of mechanical unloading by left ventricular assist devices (LVADs) and pharmacological therapy has been shown to induce clinical recovery in a limited number of patients with end‐stage heart failure. In myocytes isolated from these patients we found that, after LVAD treatment, NCX1/SERCA2a mRNA was 38% higher than at device implant. We studied the ability of NCX to extrude Ca2+ during caffeine‐induced SR Ca2+ release in isolated ventricular myocytes from these patients. The time constant of decline was slower in heart failure. In myocytes from patients with clinical recovery following mechanical and pharmacological treatment, NCX1‐mediated Ca2+ extrusion was faster compared with myocytes from patient who, despite identical treatment, did not recover. We propose that increased NCX function may be associated with reverse remodeling in patients and that factors that regulate NCX function (i.e., phosphorylation or intracellular [Na+]) other than NCX expression levels alone, may have detrimental consequences on cardiac function.
American Journal of Physiology-heart and Circulatory Physiology | 2009
Joon Lee; Mark A. Stagg; Satsuki Fukushima; Gopal K. Soppa; Urszula Siedlecka; Samuel Youssef; Ken Suzuki; Magdi H. Yacoub; Cesare M. Terracciano
Adult progenitor cell transplantation has been proposed for the treatment of heart failure, but the mechanisms effecting functional improvements remain unknown. The aim of this study was to test the hypothesis that, in failing hearts treated with cell transplantation, the mechanical properties and excitation-contraction coupling of recipient cardiomyocytes are altered. Adult rats underwent coronary artery ligation, leading to myocardial infarction and chronic heart failure. After 3 wk, they received intramyocardial injections of either 10(7) green fluorescence protein (GFP)-positive bone marrow mononuclear cells or 5 x 10(6) GFP-positive skeletal myoblasts. Four weeks after injection, both cell types increased ejection fraction and reduced cardiomyocyte size. The contractility of isolated GFP-negative cardiomyocytes was monitored by sarcomere shortening assessment, Ca(2+) handling by indo-1 and fluo-4 fluorescence, and electrophysiology by patch-clamping techniques. Injection of either bone marrow cells or skeletal myoblasts normalized the impaired contractile performance and the prolonged time to peak of the Ca(2+) transient observed in failing cardiomyocytes. The smaller and slower L-type Ca(2+) current observed in heart failure normalized after skeletal myoblast, but not bone marrow cell, transplantation. Measurement of Ca(2+) sparks suggested a normalization of sarcoplasmic reticulum Ca(2+) leak after skeletal myoblast transplantation. The increased Ca(2+) wave frequency observed in failing myocytes was reduced by either bone marrow cells or skeletal myoblasts. In conclusion, the morphology, contractile performance, and excitation-contraction coupling of individual recipient cardiomyocytes are altered in failing hearts treated with adult progenitor cell transplantation.
Regenerative Medicine | 2008
Joon S. Lee; Mark A. Stagg; Urszula Siedlecka; Najma Latif; Gopal K. Soppa; Magdi H. Yacoub; Cesare M. Terracciano
Cell therapy, the transplantation of progenitor cells into the myocardium, has been proposed as a possible treatment strategy for heart failure. Despite the lack of repopulation of the heart with progenitor cells, cell therapy induces a modest but well-documented functional improvement in patients. It is thought that paracrine mechanisms may account for the observed changes in heart function. However, there is little evidence that directly supports this hypothesis. We discuss the current views in the literature and present some preliminary data proposing that adult progenitor cells influence contractility and Ca2+ handling in neighboring failing cardiomyocytes by soluble mediators. This can be tested using a co-culture system. Our results suggest that soluble mediators from adult progenitor cells can enhance failing cardiomyocyte function, supporting the paracrine hypothesis. This co-culture strategy can be employed to identify cell-specific soluble mediators and their cellular targets during cell therapy for the treatment of heart disease.
PLOS ONE | 2014
Manoraj Navaratnarajah; Urszula Siedlecka; Michael Ibrahim; Carin Van Doorn; Gopal K. Soppa; Ajay Gandhi; Adarsh Shah; Punam Kukadia; Magdi H. Yacoub; Cesare M. Terracciano
Background Clenbuterol (Cl), a β2 agonist, is associated with enhanced myocardial recovery during left ventricular assist device (LVAD) support, and exerts beneficial remodelling effects during mechanical unloading (MU) in rodent heart failure (HF). However, the specific effects of combined Cl+β1 blockade during MU are unknown. Methods and Results We studied the chronic effects (4 weeks) of β2-adrenoceptor (AR) stimulation via Cl (2 mg/kg/day) alone, and in combination with β1-AR blockade using metoprolol ((Met), 250 mg/kg/day), on whole heart/cell structure, function and excitation-contraction (EC) coupling in failing (induced by left coronary artery (LCA) ligation), and unloaded (induced by heterotopic abdominal heart transplantation (HATx)) failing rat hearts. Combined Cl+Met therapy displayed favourable effects in HF: Met enhanced Cls improvement in ejection fraction (EF) whilst preventing Cl-induced hypertrophy and tachycardia. During MU combined therapy was less beneficial than either mono-therapy. Met, not Cl, prevented MU-induced myocardial atrophy, with increased atrophy occurring during combined therapy. MU-induced recovery of Ca2+ transient amplitude, speed of Ca2+ release and sarcoplasmic reticulum Ca2+ content was enhanced equally by Cl or Met mono-therapy, but these benefits, together with Cls enhancement of sarcomeric contraction speed, and MU-induced recovery of Ca2+ spark frequency, disappeared during combined therapy. Conclusions Combined Cl+Met therapy shows superior functional effects to mono-therapy in rodent HF, but appears inferior to either mono-therapy in enhancing MU-induced recovery of EC coupling. These results suggest that combined β2-AR simulation +β1-AR blockade therapy is likely to be a safe and beneficial therapeutic HF strategy, but is not as effective as mono-therapy in enhancing myocardial recovery during LVAD support.