Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gopal Santhanam is active.

Publication


Featured researches published by Gopal Santhanam.


Nature Neuroscience | 2010

Stimulus onset quenches neural variability: a widespread cortical phenomenon

Mark M. Churchland; Byron M. Yu; John P. Cunningham; Leo P. Sugrue; Marlene R. Cohen; Greg Corrado; William T. Newsome; Andy Clark; Paymon Hosseini; Benjamin B. Scott; David C. Bradley; Matthew A. Smith; Adam Kohn; J. Anthony Movshon; Katherine M. Armstrong; Tirin Moore; Steve W. C. Chang; Lawrence H. Snyder; Stephen G. Lisberger; Nicholas J. Priebe; Ian M. Finn; David Ferster; Stephen I. Ryu; Gopal Santhanam; Maneesh Sahani; Krishna V. Shenoy

Neural responses are typically characterized by computing the mean firing rate, but response variability can exist across trials. Many studies have examined the effect of a stimulus on the mean response, but few have examined the effect on response variability. We measured neural variability in 13 extracellularly recorded datasets and one intracellularly recorded dataset from seven areas spanning the four cortical lobes in monkeys and cats. In every case, stimulus onset caused a decline in neural variability. This occurred even when the stimulus produced little change in mean firing rate. The variability decline was observed in membrane potential recordings, in the spiking of individual neurons and in correlated spiking variability measured with implanted 96-electrode arrays. The variability decline was observed for all stimuli tested, regardless of whether the animal was awake, behaving or anaesthetized. This widespread variability decline suggests a rather general property of cortex, that its state is stabilized by an input.


Nature | 2006

A high-performance brain–computer interface

Gopal Santhanam; Stephen I. Ryu; Byron M. Yu; Afsheen Afshar; Krishna V. Shenoy

Recent studies have demonstrated that monkeys and humans can use signals from the brain to guide computer cursors. Brain–computer interfaces (BCIs) may one day assist patients suffering from neurological injury or disease, but relatively low system performance remains a major obstacle. In fact, the speed and accuracy with which keys can be selected using BCIs is still far lower than for systems relying on eye movements. This is true whether BCIs use recordings from populations of individual neurons using invasive electrode techniques or electroencephalogram recordings using less- or non-invasive techniques. Here we present the design and demonstration, using electrode arrays implanted in monkey dorsal premotor cortex, of a manyfold higher performance BCI than previously reported. These results indicate that a fast and accurate key selection system, capable of operating with a range of keyboard sizes, is possible (up to 6.5 bits per second, or ∼15 words per minute, with 96 electrodes). The highest information throughput is achieved with unprecedentedly brief neural recordings, even as recording quality degrades over time. These performance results and their implications for system design should substantially increase the clinical viability of BCIs in humans.


The Journal of Neuroscience | 2006

Neural variability in premotor cortex provides a signature of motor preparation

Mark M. Churchland; Byron M. Yu; Stephen I. Ryu; Gopal Santhanam; Krishna V. Shenoy

We present experiments and analyses designed to test the idea that firing rates in premotor cortex become optimized during motor preparation, approaching their ideal values over time. We measured the across-trial variability of neural responses in dorsal premotor cortex of three monkeys performing a delayed-reach task. Such variability was initially high, but declined after target onset, and was maintained at a rough plateau during the delay. An additional decline was observed after the go cue. Between target onset and movement onset, variability declined by an average of 34%. This decline in variability was observed even when mean firing rate changed little. We hypothesize that this effect is related to the progress of motor preparation. In this interpretation, firing rates are initially variable across trials but are brought, over time, to their “appropriate” values, becoming consistent in the process. Consistent with this hypothesis, reaction times were longer if the go cue was presented shortly after target onset, when variability was still high, and were shorter if the go cue was presented well after target onset, when variability had fallen to its plateau. A similar effect was observed for the natural variability in reaction time: longer (shorter) reaction times tended to occur on trials in which firing rates were more (less) variable. These results reveal a remarkable degree of temporal structure in the variability of cortical neurons. The relationship with reaction time argues that the changes in variability approximately track the progress of motor preparation.


neural information processing systems | 2008

Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity

Byron M. Yu; John P. Cunningham; Gopal Santhanam; Stephen I. Ryu; Krishna V. Shenoy; Maneesh Sahani

We consider the problem of extracting smooth, low-dimensional neural trajectories that summarize the activity recorded simultaneously from many neurons on individual experimental trials. Beyond the benefit of visualizing the high-dimensional, noisy spiking activity in a compact form, such trajectories can offer insight into the dynamics of the neural circuitry underlying the recorded activity. Current methods for extracting neural trajectories involve a two-stage process: the spike trains are first smoothed over time, then a static dimensionality-reduction technique is applied. We first describe extensions of the two-stage methods that allow the degree of smoothing to be chosen in a principled way and that account for spiking variability, which may vary both across neurons and across time. We then present a novel method for extracting neural trajectories-Gaussian-process factor analysis (GPFA)-which unifies the smoothing and dimensionality-reduction operations in a common probabilistic framework. We applied these methods to the activity of 61 neurons recorded simultaneously in macaque premotor and motor cortices during reach planning and execution. By adopting a goodness-of-fit metric that measures how well the activity of each neuron can be predicted by all other recorded neurons, we found that the proposed extensions improved the predictive ability of the two-stage methods. The predictive ability was further improved by going to GPFA. From the extracted trajectories, we directly observed a convergence in neural state during motor planning, an effect that was shown indirectly by previous studies. We then show how such methods can be a powerful tool for relating the spiking activity across a neural population to the subjects behavior on a single-trial basis. Finally, to assess how well the proposed methods characterize neural population activity when the underlying time course is known, we performed simulations that revealed that GPFA performed tens of percent better than the best two-stage method.


international conference of the ieee engineering in medicine and biology society | 2004

Power feasibility of implantable digital spike-sorting circuits for neural prosthetic systems

Zachary S. Zumsteg; Caleb Kemere; Stephen O'Driscoll; Gopal Santhanam; Rizwan E. Ahmed; Krishna V. Shenoy; Teresa H. Meng

A new class of neural prosthetic systems aims to assist disabled patients by translating cortical neural activity into control signals for prosthetic devices. Based on the success of proof-of-concept systems in the laboratory, there is now considerable interest in increasing system performance and creating implantable electronics for use in clinical systems. A critical question that impacts system performance and the overall architecture of these systems is whether it is possible to identify the neural source of each action potential (spike sorting) in real-time and with low power. Low power is essential both for power supply considerations and heat dissipation in the brain. In this paper we report that state-of-the-art spike sorting algorithms are not only feasible using modern complementary metal oxide semiconductor very large scale integration processes, but may represent the best option for extracting large amounts of data in implantable neural prosthetic interfaces.


IEEE Transactions on Biomedical Engineering | 2007

HermesB: A Continuous Neural Recording System for Freely Behaving Primates

Gopal Santhanam; Michael D. Linderman; Vikash Gilja; Afsheen Afshar; Stephen I. Ryu; Teresa H. Meng; Krishna V. Shenoy

Chronically implanted electrode arrays have enabled a broad range of advances in basic electrophysiology and neural prosthetics. Those successes motivate new experiments, particularly, the development of prototype implantable prosthetic processors for continuous use in freely behaving subjects, both monkeys and humans. However, traditional experimental techniques require the subject to be restrained, limiting both the types and duration of experiments. In this paper, we present a dual-channel, battery-powered neural recording system with an integrated three-axis accelerometer for use with chronically implanted electrode arrays in freely behaving primates. The recording system called HermesB, is self-contained, autonomous, programmable, and capable of recording broadband neural (sampled at 30 kS/s) and acceleration data to a removable compact flash card for up to 48 h. We have collected long-duration data sets with HermesB from an adult macaque monkey which provide insight into time scales and free behaviors inaccessible under traditional experiments. Variations in action potential shape and root-mean square (RMS) noise are observed across a range of time scales. The peak-to-peak voltage of action potentials varied by up to 30% over a 24-h period including step changes in waveform amplitude (up to 25%) coincident with high acceleration movements of the head. These initial results suggest that spike-sorting algorithms can no longer assume stable neural signals and will need to transition to adaptive signal processing methodologies to maximize performance. During physically active periods (defined by head-mounted accelerometer), significantly reduced 5-25-Hz local field potential (LFP) power and increased firing rate variability were observed. Using a threshold fit to LFP power, 93% of 403 5-min recording blocks were correctly classified as active or inactive, potentially providing an efficient tool for identifying different behavioral contexts in prosthetic applications. These results demonstrate the utility of the HermesB system and motivate using this type of system to advance neural prosthetics and electrophysiological experiments.


Journal of Neurophysiology | 2008

Detecting Neural-State Transitions Using Hidden Markov Models for Motor Cortical Prostheses

Caleb Kemere; Gopal Santhanam; Byron M. Yu; Afsheen Afshar; Stephen I. Ryu; Teresa H. Meng; Krishna V. Shenoy

Neural prosthetic interfaces use neural activity related to the planning and perimovement epochs of arm reaching to afford brain-directed control of external devices. Previous research has primarily centered on accurately decoding movement intention from either plan or perimovement activity, but has assumed that temporal boundaries between these epochs are known to the decoding system. In this work, we develop a technique to automatically differentiate between baseline, plan, and perimovement epochs of neural activity. Specifically, we use a generative model of neural activity to capture how neural activity varies between these three epochs. Our approach is based on a hidden Markov model (HMM), in which the latent variable (state) corresponds to the epoch of neural activity, coupled with a state-dependent Poisson firing model. Using an HMM, we demonstrate that the time of transition from baseline to plan epochs, a transition in neural activity that is not accompanied by any external behavior changes, can be detected using a threshold on the a posteriori HMM state probabilities. Following detection of the plan epoch, we show that the intended target of a center-out movement can be detected about as accurately as that by a maximum-likelihood estimator using a window of known plan activity. In addition, we demonstrate that our HMM can detect transitions in neural activity corresponding to targets not found in training data. Thus the HMM technique for automatically detecting transitions between epochs of neural activity enables prosthetic interfaces that can operate autonomously.


The Journal of Neuroscience | 2007

Single-neuron stability during repeated reaching in macaque premotor cortex.

Cynthia A. Chestek; Aaron P. Batista; Gopal Santhanam; Byron M. Yu; Afsheen Afshar; John P. Cunningham; Vikash Gilja; Stephen I. Ryu; Mark M. Churchland; Krishna V. Shenoy

Some movements that animals and humans make are highly stereotyped, repeated with little variation. The patterns of neural activity associated with repeats of a movement may be highly similar, or the same movement may arise from different patterns of neural activity, if the brain exploits redundancies in the neural projections to muscles. We examined the stability of the relationship between neural activity and behavior. We asked whether the variability in neural activity that we observed during repeated reaching was consistent with a noisy but stable relationship, or with a changing relationship, between neural activity and behavior. Monkeys performed highly similar reaches under tight behavioral control, while many neurons in the dorsal aspect of premotor cortex and the primary motor cortex were simultaneously monitored for several hours. Neural activity was predominantly stable over time in all measured properties: firing rate, directional tuning, and contribution to a decoding model that predicted kinematics from neural activity. The small changes in neural activity that we did observe could be accounted for primarily by subtle changes in behavior. We conclude that the relationship between neural activity and practiced behavior is reasonably stable, at least on timescales of minutes up to 48 h. This finding has significant implications for the design of neural prosthetic systems because it suggests that device recalibration need not be overly frequent, It also has implications for studies of neural plasticity because a stable baseline permits identification of nonstationary shifts.


Journal of Neural Engineering | 2007

Free-paced high-performance brain-computer interfaces.

Neil Achtman; Afsheen Afshar; Gopal Santhanam; Byron M. Yu; Stephen I. Ryu; Krishna V. Shenoy

Neural prostheses aim to improve the quality of life of severely disabled patients by translating neural activity into control signals for guiding prosthetic devices or computer cursors. We recently demonstrated that plan activity from premotor cortex, which specifies the endpoint of the upcoming arm movement, can be used to swiftly and accurately guide computer cursors to the desired target locations. However, these systems currently require additional, non-neural information to specify when plan activity is present. We report here the design and performance of state estimator algorithms for automatically detecting the presence of plan activity using neural activity alone. Prosthesis performance was nearly as good when state estimation was used as when perfect plan timing information was provided separately ( approximately 5 percentage points lower, when using 200 ms of plan activity). These results strongly suggest that a completely neurally-driven high-performance brain-computer interface is possible.


IEEE Signal Processing Magazine | 2008

Signal Processing Challenges for Neural Prostheses

Michael D. Linderman; Gopal Santhanam; Caleb Kemere; Vikash Gilja; Stephen O'Driscoll; Byron M. Yu; Afsheen Afshar; Stephen I. Ryu; Krishna V. Shenoy; Teresa H. Meng

Cortically controlled prostheses are able to translate neural activity from the cerebral cortex into control signals for guiding computer cursors or prosthetic limbs. While both noninvasive and invasive electrode techniques can be used to measure neural activity, the latter promises considerably higher levels of performance and therefore functionality to patients. The process of translating analog voltages recorded at the electrode tip into control signals for the prosthesis requires sophisticated signal acquisition and processing techniques. In this article we briefly review the current state-of-the-art in invasive, electrode-based neural prosthetic systems, with particular attention to the advanced signal processing algorithms that enable that performance. Improving prosthetic performance is only part of the challenge, however. A clinically viable prosthetic system will need to be more robust and autonomous and, unlike existing approaches that depend on multiple computers and specialized recording units, must be implemented in a compact, implantable prosthetic processor (IPP). In this article we summarize recent results which indicate that state-of-the-art prosthetic systems can be implemented in an IPP using current semiconductor technology, and the challenges that face signal processing engineers in improving prosthetic performance, autonomy and robustness within the restrictive constraints of the IPP.

Collaboration


Dive into the Gopal Santhanam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byron M. Yu

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Stephen I. Ryu

Palo Alto Medical Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maneesh Sahani

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark M. Churchland

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vikash Gilja

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge