Gopalan Rajaraman
Indian Institute of Technology Bombay
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gopalan Rajaraman.
Dalton Transactions | 2011
Saurabh Kumar Singh; Neeraj Kumar Tibrewal; Gopalan Rajaraman
Theoretical calculations using density functional methods have been performed on two dinuclear {Ni(II)-Gd(III)} and two trinuclear {Ni(II)-Gd(III)-Ni(II)} complexes having two and three μ-OR (R = alkyl or aromatic groups) bridging groups. The different magnetic behaviour, having moderately strong ferromagnetic coupling for complexes having two μ-OR groups and weak ferromagnetic coupling for complexes having three μ-OR groups, observed experimentally is very well reproduced by the calculations. Additionally, computation of overlap integrals MO and NBO analysis reveals a clear increase in antiferromagnetic contribution to the net exchange for three μ-OR bridged {Ni-Gd} dimers and also provides several important clues regarding the mechanism of magnetic coupling. Besides, MO and NBO analysis discloses the role of the empty 5d orbitals of the Gd(III) ion on the mechanism of magnetic coupling. Magneto-structural correlations for Ni-O-Gd bond angles, Ni-O and Gd-O bond distances, and the Ni-O-Gd-O dihedral angle have been developed and compared with the published experimental {Ni-Gd} structures and their J values indicate that the Ni-O-Gd bond angles play a prominent role in these types of complexes. The computation has then been extended to two trinuclear {Ni(II)-Gd(III)-Ni(II)} complexes and here both the {Ni-Gd} and the {Ni-Ni} interactions have been computed. Our calculations reveal that, for both structures studied, the two {NiGd} interactions are ferromagnetic and are similar in strength. The {Ni-Ni} interaction is antiferromagnetic in nature and our study reveals that its inclusion in fitting the magnetic data is necessary to obtain a reliable set of spin Hamiltonian parameters. Extensive magneto-structural correlations have been developed for the trinuclear complexes and the observed J trend for the trinuclear complex is similar to that of the dinuclear {Ni-Gd} complex. In addition to the structural parameters discussed above, for trinuclear complexes the twist angle between the two Ni-O-Gd planes is also an important parameter which influences the J values.
Chemistry: A European Journal | 2008
Peter Comba; Carolin Lang; Carlos Lopez de Laorden; Amsaveni Muruganantham; Gopalan Rajaraman; Hubert Wadepohl; Marta Zajaczkowski
Experimental and DFT-based computational results on the aziridination mechanism and the catalytic activity of (bispidine)copper(I) and -copper(II) complexes are reported and discussed (bispidine=tetra- or pentadentate 3,7-diazabicyclo[3.1.1]nonane derivative with two or three aromatic N donors in addition to the two tertiary amines). There is a correlation between the redox potential of the copper(II/I) couple and the activity of the catalyst. The most active catalyst studied, which has the most positive redox potential among all (bispidine)copper(II) complexes, performs 180 turnovers in 30 min. A detailed hybrid density functional theory (DFT) study provides insight into the structure, spin state, and stability of reactive intermediates and transition states, the oxidation state of the copper center, and the denticity of the nitrene source. Among the possible pathways for the formation of the aziridine product, the stepwise formation of the two N-C bonds is shown to be preferred, which also follows from experimental results. Although the triplet state of the catalytically active copper nitrene is lowest in energy, the two possible spin states of the radical intermediate are practically degenerate, and there is a spin crossover at this stage because the triplet energy barrier to the singlet product is exceedingly high.
Inorganic Chemistry | 2009
Eduard Cremades; Joan Cano; Eliseo Ruiz; Gopalan Rajaraman; Constantinos J. Milios; Euan K. Brechin
Magnetic properties of the family of Mn(6) complexes with oximato bridging ligands, some of them showing the highest anisotropy energy barriers known to date, have been studied using theoretical methods based on density functional theory. The different magnetic behaviors, total spin values from 4 to 12, are well reproduced by the calculated exchange coupling constants. The analysis of the magnetostructural correlations indicates that the Mn-N-O-Mn torsion angles play a crucial role, with the out-of-plane shift of the central oxo bridging ligand involved to a lesser degree. The Mn-N-O-Mn torsion angles are mainly controlled by the existence of an intramolecular hydrogen bond between the NO group of the bridging ligand and the substituents of the equatorial oximato bridging ligand and the presence of bulky substituents in the axial carboxylato ligands.
Inorganic Chemistry | 2014
Saurabh Kumar Singh; Tulika Gupta; Gopalan Rajaraman
Magnetic anisotropy is a key component in the design of single-molecule magnets (SMMs) possessing a large barrier height for magnetization reversal. Lanthanide-based SMMs are the most promising candidates in this arena as they offer a large magnetic anisotropy due to the presence of strong spin-orbit coupling. Among lanthanides, Er(III) complexes are gaining attention in the area of SMMs, because of their intriguing magnetic properties and attractive blocking temperatures. Here, we have undertaken detailed ab initio calculations on four structurally diverse Er(III) SMMs to shed light on how the magnetic anisotropy is influenced by the role of symmetry and structural distortions. The employed CASSCF+RASSI calculations have offered rationale for the observed differences in the estimated Ueff values for the studied complexes and also offered hints to the mechanism of magnetic relaxation. The differences in the mechanism of magnetic relaxations are further analyzed based on the Er-ligand interactions, which is obtained by analyzing the charges, densities, luminescent behavior and the frontier molecular orbitals. Our calculations, for the first time, have highlighted the importance of high symmetry environment and ligand donor strength in obtaining large Ueff values for the Er(III) complexes. We have examined these possibilities by modeling several structures with variable coordination numbers and point group symmetry. These results signify the need of a detailed understanding on the shape of the anisotropy and the point group symmetry in order to achieve large Ueff values in Er(III) single-ion magnets.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Michael L. Baker; Grigore A. Timco; Stergios Piligkos; Jennifer S. Mathieson; Hannu Mutka; Floriana Tuna; Piotr Kozlowski; Michał Antkowiak; T. Guidi; Tulika Gupta; Harapriya Rath; Robert J. Woolfson; G. Kamieniarz; Robin G. Pritchard; Høgni Weihe; Leroy Cronin; Gopalan Rajaraman; David Collison; Eric J. L. McInnes; Richard E. P. Winpenny
The term “frustration” in the context of magnetism was originally used by P. W. Anderson and quickly adopted for application to the description of spin glasses and later to very special lattice types, such as the kagomé. The original use of the term was to describe systems with competing antiferromagnetic interactions and is important in current condensed matter physics in areas such as the description of emergent magnetic monopoles in spin ice. Within molecular magnetism, at least two very different definitions of frustration are used. Here we report the synthesis and characterization of unusual nine-metal rings, using magnetic measurements and inelastic neutron scattering, supported by density functional theory calculations. These compounds show different electronic/magnetic structures caused by frustration, and the findings lead us to propose a classification for frustration within molecular magnets that encompasses and clarifies all previous definitions.
Angewandte Chemie | 2014
Kasper S. Pedersen; Giulia Lorusso; Juan José Morales; Thomas Weyhermüller; Stergios Piligkos; Saurabh Kumar Singh; Dennis Larsen; Magnus Schau-Magnussen; Gopalan Rajaraman; Marco Evangelisti; Jesper Bendix
The reaction of fac-[M(III)F3(Me3tacn)]⋅x H2O with Gd(NO3)3⋅5H2O affords a series of fluoride-bridged, trigonal bipyramidal {Gd(III)3M(III)2} (M = Cr (1), Fe (2), Ga (3)) complexes without signs of concomitant GdF3 formation, thereby demonstrating the applicability even of labile fluoride-complexes as precursors for 3d-4f systems. Molecular geometry enforces weak exchange interactions, which is rationalized computationally. This, in conjunction with a lightweight ligand sphere, gives rise to large magnetic entropy changes of 38.3 J kg(-1) K(-1) (1) and 33.1 J kg(-1) K(-1) (2) for the field change 7 T→0 T. Interestingly, the entropy change, and the magnetocaloric effect, are smaller in 2 than in 1 despite the larger spin ground state of the former secured by intramolecular Fe-Gd ferromagnetic interactions. This observation underlines the necessity of controlling not only the ground state but also close-lying excited states for successful design of molecular refrigerants.
Journal of the American Chemical Society | 2013
Azaj Ansari; Abhishek Kaushik; Gopalan Rajaraman
ortho-Hydroxylation of aromatic compounds by non-heme Fe complexes has been extensively studied in recent years by several research groups. The nature of the proposed oxidant varies from Fe(III)-OOH to high-valent Fe(IV)═O and Fe(V)═O species, and no definitive consensus has emerged. In this comprehensive study, we have investigated the ortho-hydroxylation of aromatic compounds by an iron complex using hybrid density functional theory incorporating dispersion effects. Three different oxidants, Fe(III)-OOH, Fe(IV)═O, and Fe(V)═O, and two different pathways, H-abstraction and electrophilic attack, have been considered to test the oxidative ability of different oxidants and to underpin the exact mechanism of this regiospecific reaction. By mapping the potential energy surface of each oxidant, our calculations categorize Fe(III)-OOH as a sluggish oxidant, as both proximal and distal oxygen atoms of this species have prohibitively high barriers to carry out the aromatic hydroxylation. This is in agreement to the experimental observation where Fe(III)-OOH is found not to directly attack the aromatic ring. A novel mechanism for the explicit generation of non-heme Fe(IV)═O and Fe(V)═O from isomeric forms of Fe(III)-OOH has been proposed where the O···O bond is found to cleave via homolytic (Fe(IV)═O) or heterolytic (Fe(V)═O) fashion exclusively. Apart from having favorable formation energies, the Fe(V)═O species also has a lower barrier height compared to the corresponding Fe(IV)═O species for the aromatic ortho-hydroxylation reaction. The transient Fe(V)═O prefers electrophilic attack on the benzene ring rather than the usual aromatic C-H activation step. A large thermodynamic drive for the formation of a radical intermediate is encountered in the mechanistic scene, and this intermediate substantially diminishes the energy barrier required for C-H activation by the Fe(V)═O species. Further spin density distribution and the frontier orbitals of the computed species suggest that the Fe(IV)═O species has a substantial barrier height for this reaction, as the substrate is coordinated to the metal atoms. This coordination restricts the C-H activation step by Fe(IV)═O species to proceed via the π-type pathway, and thus the usual energy lowering due to the low-lying quintet state is not observed here.
Inorganic Chemistry | 2011
Sujit Sasmal; Susanta Hazra; Parimal Kundu; Dutta S; Gopalan Rajaraman; Sañudo Ec; Sasankasekhar Mohanta
This investigation presents the syntheses, crystal structures, magnetic properties, and density functional theoretical modeling of magnetic behavior of two heterobridged μ-phenoxo-μ(1,1)-azido dinickel(II) compounds [Ni(II)(2)(L(1))(2)(μ(1,1)-N(3))(N(3))(H(2)O)]·CH(3)CH(2)OH (1) and [Ni(II)(2)(L(2))(2)(μ(1,1)-N(3))(CH(3)CN)(H(2)O)](ClO(4))·H(2)O·CH(3)CN (2), where HL(1) and HL(2) are the [1+1] condensation products of 3-methoxysalicylaldehyde and 1-(2-aminoethyl)-piperidine (for HL(1))/4-(2-aminoethyl)-morpholine (for HL(2)), along with density functional theoretical magneto-structural correlations of μ-phenoxo-μ(1,1)-azido dinickel(II) systems. Compounds 1 and 2 crystallize in orthorhombic (space group Pbca) and monoclinic (space group P2(1)/c) systems, respectively. The coordination environments of both metal centers are distorted octahedral. The variable-temperature (2-300 K) magnetic susceptibilities at 0.7 T of both compounds have been measured. The interaction between the metal centers is moderately ferromagnetic; J = 16.6 cm(-1), g = 2.2, and D = -7.3 cm(-1) for 1 and J = 16.92 cm(-1), g = 2.2, and D(Ni1) = D(Ni2) = -6.41 cm(-1) for 2. Broken symmetry density functional calculations of exchange interaction have been performed on complexes 1 and 2 and provide a good numerical estimate of J values (15.8 cm(-1) for 1 and 15.35 cm(-1) for 2) compared to experiments. The role of Ni-N bond length asymmetry on the magnetic coupling has been noted by comparing the structures and J values of complexes 1 and 2 together with previously published dimers 3 (Eur. J. Inorg. Chem. 2009, 4982), 4 (Inorg. Chem. 2004, 43, 2427), and 5 (Dalton Trans. 2008, 6539). Our extensive DFT calculations reveal an important clue to the mechanism of coupling where the orientation of the magnetic orbitals seems to differ with asymmetry in the Ni-N bond lengths. This difference in orientation leads to a large change in the overlap integral between the magnetic orbitals and thus the magnetic coupling. DFT calculations have also been extended to develop several magneto-structural correlations in this type of complexes and the correlation aim to focus on the asymmetry of the Ni-N bond lengths reveal that the asymmetry plays a proactive role in governing the magnitude of the coupling. From a completely symmetric Ni-N bond length, two behaviors have been noted: with a decrease in bond length there is an increase in the ferromagnetic coupling, while an increase in the bond lengths leads to a decrease in ferromagnetic interaction. The later correlation is supported by experiments. The magnetic properties of 1, 2, and three previously reported related compounds have been discussed in light of the structural parameters and also in light of the theoretical correlations determined here.
Inorganic Chemistry | 2008
Mihail Atanasov; Christoph Busche; Peter Comba; Fadi El Hallak; Bodo Martin; Gopalan Rajaraman; Joris van Slageren; Hubert Wadepohl
The reaction of the hexacyanometalates K3[M(1)(CN)6] (M(1) = Cr(III), Fe(III), Co(III)) with the bispidine complexes [M(2)(L(1))(X)](n+) and [M(2)(L(2))(X)](n+) (M(2) = Mn(II), Ni(II), Cu(II); L(1) = 3-methyl-9-oxo-2,4-di-(2-pyridyl)-7-(2-pyridylmethyl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylic acid dimethyl ester; L(2) = 3-methyl-9-oxo-7-(2-pyridylmethyl)-2,4-di-(2-quinolyl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylic acid dimethyl ester; X = anion or solvent) in water-methanol mixtures affords trinuclear complexes with cis- or trans-arrangement of the bispidine-capped divalent metal centers around the hexacyanometalate. X-ray structural analyses of five members of this family of complexes (cis-Fe[CuL(2)]2, trans-Fe[CuL(1)]2, cis-Co[CuL(2)]2, trans-Cr[MnL(1)]2, trans-Fe[MnL(1)]2) and the magnetic data of the entire series are reported. The magnetic data of the cyanide bridged, ferromagnetically coupled cis- and trans-Fe[ML]2 compounds (M = Ni(II), Cu(II)) with S = 3/2 (Cu(II)) and S = 5/2 (Ni(II)) ground states are analyzed with an extended Heisenberg Hamiltonian which accounts for anisotropy and zero-field splitting, and the data of the Cu(II) systems, for which structures are available, are thoroughly analyzed in terms of an orbital-dependent Heisenberg Hamiltonian, in which both spin-orbit coupling and low-symmetry ligand fields are taken into account. It is shown that the absence of single-molecule magnetic behavior in all spin clusters reported here is due to a large angular distortion of the [Fe(CN)6](3-) center and the concomitant quenching of orbital angular momentum of the Fe(III) ((2)T2g) ground state.
Journal of Computational Chemistry | 2006
Mihail Atanasov; Peter Comba; Bodo Martin; Vera Müller; Gopalan Rajaraman; Heidi Rohwer; Steffen Wunderlich
Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF‐density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper–ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(II) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF‐DFT and spectroscopically oriented CI methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions.